Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:41:33.578Z Has data issue: false hasContentIssue false

Polyarenemethylidenes, A new Class of low GAP Polymers

Published online by Cambridge University Press:  25 February 2011

M. Hanack
Affiliation:
Institut für organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-W-7400 Tübingen, Federal Republic of Germany
G. Hieber
Affiliation:
Institut für organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-W-7400 Tübingen, Federal Republic of Germany
K. -M. Mangold
Affiliation:
Institut für organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-W-7400 Tübingen, Federal Republic of Germany
H. Ritter
Affiliation:
Institut für organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-W-7400 Tübingen, Federal Republic of Germany
U. Röhrig
Affiliation:
Institut für organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-W-7400 Tübingen, Federal Republic of Germany
Get access

Abstract

Based on theoretical calculations Polyarenemethylidenes (PAM) 1 have been predicted to be low gap polymers with good semiconducting and photoelectrical properties. The preparation of such a polymer with a well defined structure affords the synthesis of suitable precursors. We have been able to synthesize and characterize a variety of monomers in which the inner quinonoid system is present. Also more extended systems containing one or two additional benzene rings at the quinonoid system have been prepared. The chemical and electrochemical polymerization of the precursors is reported, leading to polymers 1 in a great structural variety.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bredas, J. L., Springer Ser. Sol. State Sci., 63, 166 (1985)Google Scholar
[2] Kertesz, M., Lee, Y. -S., J. Chem. Phys., 88, 209 (1988)Google Scholar
[3] F. wudl, Kobayashi, M., Heeger, A. J., Colaneri, N., J. Chem. Phys., 82., 5717 (1985)Google Scholar
[4] Tourillon, G., Garnier, F., J. Electroanal. Chem., 135, 173, (1982)Google Scholar
[5] Brédas, J. L. et al, Synth. Met., 28, C205 (1988)Google Scholar
[6] Fernandez, J. E., Al Jumah, K., Macromolecules, 20, 1177 (1987)Google Scholar
[7] Jenekhe, S. A., Nature, 322., 345 (1986)Google Scholar
[8] Giles, J., G.B. Patent No. WO87/00678 (29 January 1987)Google Scholar
[9] Wudl, F., Patii, A.O., Macromolecules, 21, 540 (1988)Google Scholar
[10] Jira, R., Bräunling, H., Synth. Met., 17, 691 (1987)Google Scholar
[11] Bräunling, H. et al, Springer Ser. Sol. State Sci., 91, 465, (1989)Google Scholar
[12] Bräunling, H. et al, Synth. Met., 42, 1539 (1991)Google Scholar
[13] Hieber, G., Hanack, M., Wurst, K., Strähle, J., Chem. Ber 124, 1597 (1991)Google Scholar
[14] Ritter, H., diploma thesis, Universität Tübingen 1990 Google Scholar
[15] Chasar, D. W., Pratt, T.M., Synthesis, 1976, 262 Google Scholar
[16] Koβmehl, G., Makromol. Chem. Rapid Commun., 1983, 639 Google Scholar
[17] Zimmer, H. et al, J. Polym. Sci. Polym. Lett. Ed., 22, 77 (1984)Google Scholar