Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:32:11.790Z Has data issue: false hasContentIssue false

Polyacrylate nanoparticles mediated cytotoxic process in breast cancer 4T1 cell line

Published online by Cambridge University Press:  22 January 2014

Susan S. Barros
Affiliation:
Laboratory of Nanobiotechnology, University of Brasília, Campus Ceilândia, Centro Metropolitano, Conj. A, Lote 01, Ceilândia, Brasília DF, 72220-900, Brazil.
Jaqueline R. Silva
Affiliation:
Institute of Biology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília DF, 70910-900, Brazil.
Ricardo B. Azevedo
Affiliation:
Institute of Biology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília DF, 70910-900, Brazil.
Claure N. Lunardi
Affiliation:
Laboratory of Nanobiotechnology, University of Brasília, Campus Ceilândia, Centro Metropolitano, Conj. A, Lote 01, Ceilândia, Brasília DF, 72220-900, Brazil.
Anderson J. Gomes
Affiliation:
Laboratory of Nanobiotechnology, University of Brasília, Campus Ceilândia, Centro Metropolitano, Conj. A, Lote 01, Ceilândia, Brasília DF, 72220-900, Brazil.
Get access

Abstract

The main objective of this study was to develop a polymeric drug delivery system for tamoxifen (TMX), intended to be injectable Eudragit® nanoparticles (NP) for breast cancer treatment. TMX-Eudragit-NP were characterized in terms of particle size, surface morphology, drug physical state by using photon correlation spectrometry (PCS), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The entrapment efficiency (%EE) and in vitro drug release studies were estimated spectrophotometrically by UV-vis technique. The cell toxicity assay was performed in 4T1 cell line using MTT test. TMX-Eudragit-NP showed a maximum entrapment efficient of 23%. The size measurements were compared with the empty nanoparticles and showed values of TMX-Eudragit-NP = 133 ± 30 nm nm, and empty- NP = 273± 50 nm. The zeta potential of particles was +65 and +38 mV for TMX-Eudragit-NP and empty-NP respectively. FTIR studies did not indicate changes in chemical structure or polymer-drug interaction. The cytotoxicity against the 4T1 cells was affected significantly by the released amount of TMX, while empty-NP exhibit no significant cytotoxicity against mouse breast cancer cells (4T1 cell line).

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araújo, A. P. V., Lunardi, C. N., and Gomes, A. J., MRS Online Proceedings Library, 1498, 9, (2013).CrossRefGoogle Scholar
Mendenhall, D. W., Kobayashi, H., Shih, F. M., Sternson, L. A., Higuchi, T., and Fabian, C., Clin Chem, 24, 1524, (1978).Google Scholar
Das, S., Suresh, P. K., and Desmukh, R., Nanomedicine, 6, 323, (2010).Google Scholar
Pinto Reis, C., Neufeld, R. J., Ribeiro, A. J., and Veiga, F., Nanomedicine, 2, 8, (2006).Google Scholar
Pathan, I. B. and Setty, C. M., Digest Journal of Nanomaterials and Biostructures, 7, 1373, (2012).Google Scholar
Basu, S. K. and Adhiyaman, R., Tropical Journal of Pharmaceutical Research, 7, 1033, (2008).CrossRefGoogle Scholar
Nath, B., Nath, L. K., and Kumar, P., Acta Poloniae Pharmaceutica, 68, 409, (2011).Google Scholar
Pendekal, M. S. and Tegginamat, P. K., Saudi Pharm J, 21, 177, (2013).CrossRefGoogle Scholar
Lamprecht, A., Yamamoto, H., Takeuchi, H., and Kawashima, Y., J Control Release, 90, 313, (2003).CrossRefGoogle Scholar
Goel, A., Kunnumakkara, A. B., and Aggarwal, B. B., Biochemical Pharmacology, 75, 787, (2008).CrossRefGoogle Scholar
Gomes, A. J., Lunardi, C. N., Lunardi, L. O., Pitol, D. L., and Machado, A. E., Micron, 39, 40, (2008).CrossRefGoogle Scholar
Gomes, A. J., Espreafico, E. M., and Tfouni, E., Mol Pharm, 10, 3544, (2013).CrossRefGoogle Scholar
Lorenz, M. R., Holzapfel, V., Musyanovych, A., Nothelfer, K., Walther, P., Frank, H., et al. ., Biomaterials, 27, 2820, (2006).CrossRefGoogle Scholar
Kumar, R., Roy, I., Ohulchanskky, T. Y., Vathy, L. A., Bergey, E. J., Sajjad, M., et al. ., ACS Nano, 4, 699, (2010).CrossRefGoogle Scholar
Brigger, I., Chaminade, P., Marsaud, V., Appel, M., Besnard, M., Gurny, R., et al. ., International Journal of Pharmaceutics, 214, 37, (2001).CrossRefGoogle Scholar
Chawla, J. S. and Amiji, M. M., International Journal of Pharmaceutics, 249, 127, (2002).CrossRefGoogle Scholar
Gomes, A. J., Lunardi, C. N., and Tedesco, A. C., Photomed Laser Surg, 25, 428, (2007).CrossRefGoogle Scholar
Gomes, A. J., Faustino, A. S., Lunardi, C. N., Lunardi, L. O., and Machado, A. E., Int J Pharm, 332, 153, (2007).CrossRefGoogle Scholar
Das, S. K. and Das, N. G., Journal of Microencapsulation, 15, 445, (1998).CrossRefGoogle Scholar
Obrero, M., Yu, D. V., and Shapiro, D. J., Journal of Biological Chemistry, 277, 45695, (2002).CrossRefGoogle Scholar