Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T04:36:10.605Z Has data issue: false hasContentIssue false

Point-Defect Migration in Crystalline Si: Impurity Content, Surface and Stress Effects

Published online by Cambridge University Press:  10 February 2011

S. Coffa
Affiliation:
CNR-IMETEM, Stradale Primosole 50, 195129 Catania (Italy)
S. Libertino
Affiliation:
CNR-IMETEM, Stradale Primosole 50, 195129 Catania (Italy)
A. La Magna
Affiliation:
CNR-IMETEM, Stradale Primosole 50, 195129 Catania (Italy)
V. Privitera
Affiliation:
CNR-IMETEM, Stradale Primosole 50, 195129 Catania (Italy)
G. Mannino
Affiliation:
INFM and Dipartimento di Fisica, UniversitA di Catania, Corso Italia 57, 195121 Catania (Italy)
F. Priolo
Affiliation:
INFM and Dipartimento di Fisica, UniversitA di Catania, Corso Italia 57, 195121 Catania (Italy)
Get access

Abstract

The results of several recent experiments aimed at assessing the room temperature migration properties of interstitials (D) and vacancies (V) in ion implanted crystalline Si are reviewed. We show that combining the results of ex-situ techniques (deep level transient spectroscopy and spreading resistance profilometry) and in-situ leakage current measurements new and interesting information can be achieved. It has been found that at room temperature I and V, generated by an ion beam, undergo fast long range migration (with diffusivities higher than 10−1 cm2/sec) which is interrupted by trapping at impurities (C, O) or dopant atoms and by recombination at surface. Analysis of two-dimensional migration of point defects injected through a photolithographically defined mask shows that a strong I recombination (characterized by a coefficient of 30 μm−1) occurs at the sample surface. Moreover, we have found that the strain field induced by an oxide or a nitride mask significantly affects defect migration and produces a strong anisotropy of the defect diffusivity tensor. Finally, using in-situ leakage current measuremens, performed both during and just after ion irradiation, the time scale of point defect evolution at room temperature has been determined and defect diffusivities evaluated. The implications of these results on our current understanding of defect and diffusion phenomena in Si are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fahey, I. P. M., Griffin, P. B. and Plummer, J. D., Rev. Mod. Phys. 61 (2), 289, 1989.Google Scholar
2. Larsen, K. Kyllesbech, Privitera, V., Coffa, S., Priolo, F., Campisano, S. U., and Camera, A., Phys. Rev. Lett. 76, 1493 (1996)Google Scholar
3. Privitera, V., Coffa, S., Priolo, F.. Larsen, K. Kyllesbech and Mannino, G., Appl. Phys. Lett. 68, 3422 (1996)Google Scholar
4. Bronner, G. B. and Plummer, J. D., J. Appl. Phys. 61, 5286, 1987.Google Scholar
5. Lim, D. R., Rafferty, C. S. and Klemens, F. P., Appl. Phys. Lett. 67, 2302 (1995)Google Scholar
6. Aziz, M.J., Applied Physics Letters 70, 2810 (1997)Google Scholar
7. Car, R., Kelly, P. J., Oshiyama, A. and Pantelides, S. T., Thirteenth Int. Conf. On Defects in Semiconductors, edited by Kimerling, L. C., Parsey, J. M. Jr., Warrendale, A.I.M.E., 269, 1985.Google Scholar
8. Gilmer, G. H., de la Rubia, T. Diaz, Stock, D. M. and Jaraiz, M., Nucl. Instr. and Meth. B 102, 247, 1995 Google Scholar
9. Watkins, G. D., Electronic Structure and Properties of Semiconductors, edited by Schröter, W., vol. 407, Materials Science and Technology, edited by Cahn, Harsen and Kramer, VHC, Weinherin, (1991).Google Scholar
10. Van Vechten, J. A., Phys. Rev. B 10, 1482, 1974.Google Scholar
11. Watkins, G. D., Deep Centers in Semiconductors, edited by Pantelides, S., Gordon and Breach, New York, 147, 1986, and references therein.Google Scholar
12. Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Poate, J. M., Luftman, H. S. and Haynes, T. E., J. Appl. Phys. 81, 6031 (1997)Google Scholar
13. Zhang, L. H., Jones, K. S., Chi, P. H. and Simons, D. S., Appl. Phys. Lett. 67, 2025 (1995)Google Scholar
14. Kinoshita, H., Huang, T. H. and Kwong, D. L., Appl. Phys. Lett. 75, 8213 (1994)Google Scholar
15. Ayres, J. R. and Brotherton, S. D., J. Appl. Phys. 71, 2702 (1992)Google Scholar
16. Watkins, G. D., in Deep Centers in Semiconductors, edited by Pantelides, S. T. (Gordon and Breach, New York, 1986), Chapter 3; and Watkins, G. D., in Defects and Diffusion in Silicon Processing, Mat. Res. Soc. Symp. Proc. 469, edited by T. Diaz de La Rubia, S. Coffa, P. Stolk and C. Rafferty (1997)Google Scholar
17. Watkins, G. D., Phys. Rev. B 12, 5824 (1975).Google Scholar
18. Coffa, S., Privitera, V., Priolo, F., Libertino, S. and Mannino, G., J. Appl. Phys. 81, 1639 (1997)Google Scholar
19. Hu, S. M., J. Appl. Phys. 70, R53 (1991)Google Scholar
20. Cowern, N. E. B., Zalm, P. C., van der Sluis, P., Gravesteijn, D. J. and de Boer, W. B., Phys. Rev. Lett. 72, 2585 (1994)Google Scholar
21. Chaudhry, S. and Law, M. E., J. Appl. Phys. 82, 1138 (1997)Google Scholar
22. Aziz, M.J., in Defects and Diffusion in Silicon Processing, Mat. Res. Soc. Symp. Proc. 469, edited by T. Diaz de La Rubia, S. Coffa, P. Stolk and C. Rafferty, pag. 3746 (1997).Google Scholar
23. Vandervorst, W., Clarysse, T., De Wolf, P., Hellemans, L., Snauwaert, J., Privitera, V. and Raineri, V. Nucl. Instr. and Meth. B96, 123, (1995)Google Scholar
24. Coffa, S., Magna, A. La, Privitera, V. and Mannino, G., Appl. Phys. Lett. (in press)Google Scholar
25. Jaraiz, M., Gilmer, G. H., Poate, J. M. and de la Rubia, T. Diaz, Appl. Phys. Lett 68, 409, 1996 Google Scholar
26. GermanA, R. S. and Campisano, S. U., Appl. Phys. Lett. 60, 1726 (1992).Google Scholar