Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:05:32.199Z Has data issue: false hasContentIssue false

Point Defects and Swelling Induced in Yttria-stabilized Zirconia by Swift Heavy Ion Irradiations

Published online by Cambridge University Press:  01 February 2011

Jean-Marc Costantini
Affiliation:
[email protected], CEA, DMN/SRMA, GIF SUR YVETTE, France
François Beuneu
Affiliation:
[email protected], CNRS, LSI, Palaiseau, France
Get access

Abstract

We present a study of point-defect creation in yttria-stabilized zirconia (ZrO2: Y) or YSZ exposed to various heavy ions (from C to U) covering an energy range from 100 MeV to several GeVs. It is concluded that F+-type centers (involving singly-ionized oxygen vacancies) are produced by elastic-collision processes. The ion-induced out-of-plane expansion is found to be small (< 0.2%) and to increase linearly as a function of the average F+-type center concentration with a large slope compatible with small oxygen vacancy clusters. The large defect volume and <100> axial symmetry of the F+-type centers hint that these color centers might actually be divacancies (i.e. F2+ centers).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Costantini, J. M. Trautmann, C. Thomé, L., Jagielski, J. and Beuneu, F. J. Appl. Phys. 101, 073501 (2007).Google Scholar
2 Costantini, J. M. Guillet, F. Lambert, S. Grébille, D., Beuneu, F. and Trautmann, C. J. Appl. Phys. 104, 073504 (2008).Google Scholar
3 Sickafus, K.E. HMatzke, j. Hartmann, Th., Yasuda, K. Valdez, J.A. Chodak, P. III , Nastasi, M. and Verall, R.A. J. Nucl. Mater. 274, 66 (1999).Google Scholar
4 Orera, V. M. Merino, R. I. Chen, Y. Cases, R. and Alonso, P. J. Phys. Rev. B 42, 9782 (1990).Google Scholar
5 Biersack, J. P. and Haggmark, L. G. Nucl. Instr. and Meth 174, 257 (1980), http://www.srim.orgGoogle Scholar
6 Costantini, J. M. Beuneu, F. Gourier, D. Trautmann, C. Calas, G. and Toulemonde, M. J. Phys.: Condens. Matter 16, 3957 (2004).Google Scholar
7 Costantini, J. M. and Beuneu, F. J. Phys.: Condens. Matter 18, 3671 (2006).Google Scholar
8 Costantini, J. M. and Beuneu, F. Radiat. Effects and Defects in Solids 157, 903 (2002).Google Scholar
9 Moll, S. Thomé, L., Vincent, L. Garrido, F. Sattonnay, G. Thomé, T., Jagielski, J. and Costantini, J. M. J. Appl. Phys. 105, 023512 (2009).Google Scholar
10 Henderson, B., and Wertz, J. E.Defects in the Alkaline Earth Oxides” (Taylor and Francis, London, 1977).Google Scholar
11 Zinkle, S. J. and Pells, G. P. J. Nucl. Mater. 253, 120 (1998).Google Scholar
12 Costantini, J. M. and Beuneu, F. Phys. Stat. Sol. (c) 4, 1258 (2007).Google Scholar
13 Chen, Y. Trueblood, D. L. Schow, O. E. and Tohver, H. T. J. Phys. C: Solid St. Phys. 3, 2501 (1970).Google Scholar
14 Muñoz-Ramo, D., and Shluger, A. L. J. Physics: Conf. Series 117, 012022 (2008).Google Scholar