Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T02:35:40.200Z Has data issue: false hasContentIssue false

Point Defect Injection Kinetics by N2O Oxidation of Silicon

Published online by Cambridge University Press:  15 February 2011

C. Tsamis
Affiliation:
Institute of Microelectronics, NCSR ‘Demokritos’, 15310 Aghia Paraskevi, [email protected]
D. N. Kouvatsos
Affiliation:
Institute of Microelectronics, NCSR ‘Demokritos’, 15310 Aghia Paraskevi, [email protected]
D. Tsoukalas
Affiliation:
Institute of Microelectronics, NCSR ‘Demokritos’, 15310 Aghia Paraskevi, [email protected]
Get access

Abstract

The influence of N2O oxidation of silicon on the kinetics of point defects at high temperatures is investigated. Oxidation Stacking Faults (OSF) are used to monitor the interstitials that are generated during the oxidation process. We show that at high temperatures (1050°-1150°C) the supersaturation of self-interstitials in the silicon substrate is enhanced when oxidation is performed in an N2O ambient compared to 100% dry oxidation. This behavior is attributed to the presence of nitrogen at the oxidizing interface. However, at lower temperatures this phenomenon is reversed and oxidation in N2O ambient leads to reduced supersaturation ratios.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hori, T., Iwasaki, H. and Tsuji, K., IEEE Trans. Elccton Devices ED–36, p. 340 (1990)Google Scholar
[2] Soleimani, H. R., Doyle, B. S and Philliposian, A., J. Electrochem. Soc., 142 (8), p. LI32 (1995)Google Scholar
[3] Okada, Y., Tobin, P. J., Reid, K. G., Hedge, R. I. and Ajura, S. A., J. Electrochem. Soc., 141 (12), p. 3500(1994)Google Scholar
[4] Momosc, H. H., Morimoto, T., Ozawa, Y., Yamabe, K. and Iwai, H., IEEE Trans. Electron Devices, 41, 546 (1994)Google Scholar
[5] Ma, Z. S., Chen, J. C., Liu, Z. H., Krick, J. T., Cheng, Y. C., Hu, C. and Ko, P. K., IEEE Electron Device Lett., 15, 109 (1994)Google Scholar
[6] Dunham, S.T., J. Appl. Phys. 62, 1195 (1987)Google Scholar
[7] Leroy, B., J. Appl. Phys., 50, 7996, (1979)Google Scholar
[8] Tsamis, C., Tsoukalas, D. and Stoemenos, J., J. Appl. Phys. 73, 3246 (1993)Google Scholar
[9] Koyama, N., Endoh, T., Fukuda, H. and Nomura, S., J. Appl. Phys., 79, 1464 (1996)Google Scholar
[10] Antoniadis, D. A., J. Electrochem. Soc., 129, 1093 (1982)Google Scholar
[11] Dunham, S. T., J. Electrochem. Soc., 136, 250 (1989)Google Scholar
[12] Taniguchi, K., Shibata, Y. and Hamaguchi, C., J. Appl. Phys. 65, 2723 (1989)Google Scholar
[13] Tobin, P. J., Okada, Y., Ajuria, S. A., Lakhotia, V., Feil, W. A. and Hedge, R. I., J. Appl. Phys., 75, 1811 (1994)Google Scholar
[14] Hussey, R. J., Hoffman, T. L., Tao, Y. and Graham, M. J., J. Electrochem. Soc., 143, 221 (1996)Google Scholar
[15] Tsui, P. G. Y., Tseng, H. H, Orlowski, M., Sun, A. W., Tobin, P.J., Reid, K. and Taylor, W., IEDM Tech. Digest, 501 (1994)Google Scholar
[16] Roth, D. J., Huang, R. Y. S., Plummer, J. D. and Dutton, R. W., Appl. Phys. Lett 62, 2498 (1993)Google Scholar