Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:19:06.377Z Has data issue: false hasContentIssue false

Point Defect Engineering Applied to Shallow Junction ULSI Processing

Published online by Cambridge University Press:  21 February 2011

George A. Rozgonyi
Affiliation:
North Carolina State University Department of Materials Science and Engineering Raleigh, NC 27695–7916
J. W. Honeycutt
Affiliation:
North Carolina State University Department of Materials Science and Engineering Raleigh, NC 27695–7916
Get access

Abstract

We describe how a simple qualitative understanding of the interfacial reactions occurring during typical ULSI processes for junction formation, dopant activation, and contact silicidation can be used to eliminate end-of-range interstitial dislocation loops and beneficially impact the diffusion of dopants. Following a brief discussion of the well-documented effects of oxidation and nitridation on extended defects and dopant diffusion, conditions for elimination of implantation-induced defects are specified. Cross-section and plan-view TEM along with angle lapping and chemical etching of implanted and diffused junctions are presented to illustrate the application of point defect engineering to process technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hu, S.M., MRS Symp. Proc., 2, 333 (1981).Google Scholar
2. Antoniadis, D.A., J. Electrochem. Soc., 129, 1093 (1982).Google Scholar
3. Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys., 61, 289 (1989).Google Scholar
4. Hu, S.M., J. Appl Phys., 51, 3666 (1980).Google Scholar
5. Hu, S.M., J. Appl. Phys., 45, 1567 (1974).Google Scholar
6. Tiller, W.A., J. Electrochem. Soc., 128, 689 (1981).Google Scholar
7. Tan, T.Y. and Goesele, U., Appl. Phys. Lett., 39, 86 (1981).Google Scholar
8. Shiraki, H., Jpn. J. Appl. Phys., 14, 747 (1975).Google Scholar
9. Shiraki, H., Semiconductor Silicon 1977, Huff, H.R. and Sirtl, E., eds. (Electrochemical Society, Pennington, NJ, 1977), p.546.Google Scholar
10. Claeys, C., Laes, E.L., Declerck, G.J., and van Overstraeten, R.J., Semiconductor Silicon 1977, Huff, H.R. and Sirtl, E., eds. (Electrochemical Society, Pennington, NJ, 1977), p.773.Google Scholar
11. Tan, T.Y. and Ginsberg, B.J., Appl. Phys. Lett., 42, 448 (1983).Google Scholar
12. Francis, R. and Dobson, P.S., J. Appl. Phys., 50, 280 (1979).Google Scholar
13. Tan, T.Y. and Gosele, U., Appl. Phys. Lett., 40, 616 (1982).Google Scholar
14. Hayafuji, Y., Kajiwara, K., and Usui, S., J. Appl. Phys., 53, 8639 (1982).Google Scholar
15. Mizuo, S. and Higuchi, H., J. Electrochem. Soc., 130, 1942 (1983).Google Scholar
16. Fahey, P., Barbuscia, G., Moslehi, M., and Dutton, R.W., Appl. Phys. Lett.,46, 784 (1985).Google Scholar
17. Hayafuji, Y. and Kajiwara, K., J. Electrochem. Soc., 129, 2102 (1982).Google Scholar
18. Carter, C., Maszara, W., Sadana, D.K., Rozgonyi, G.A., Liu, J., and Wortman, J., Appl. Phys. Lett., 44, 459 (1984).Google Scholar
19. Ajmera, A.C. and Rozgonyi, G.A., Appl. Phys. Lett., 49, 19 (1986).Google Scholar
20. Ganin, E. and Marwick, A., These Proceedings.Google Scholar
21. Wittmer, M. and Tu, K.N., Phys. Rev. B, 29, 2010 (1984).Google Scholar
22. Ohdomari, I., Konuma, K., Takano, M., Chikyow, T., Dawarada, H., Nakanishi, J., and Ueno, T., MRS Symp. Proc., 54, 63 (1985).Google Scholar
23. Maex, K., De Keersmaecker, R., Claeys, C., Vanhellemont, J., Alkemade, P.F.A., Semiconductor Silicon 1986, Huff, H.R., Abe, T., and Kolbesen, B., eds. (Electrochemical Society, Pennington, NJ, 1986), 346.Google Scholar
24. Wen, D.S., Smith, P.L., Osburn, C.M., and Rozgonyi, G.A., Appl. Phys. Lett., 51, 1182 (1987).Google Scholar
25. Wen, D.S., Smith, P.L., Osburn, C.M., and Rozgonyi, G.A., J. Electrochem. Soc., 136, 466 (1989).Google Scholar
26. Fahey, P. and Dutton, R.W., Appl. Phys. Lett., 52, 1092 (1988).Google Scholar
27. Hu, S.M., Appl. Phys. Lett., 51, 308 (1987).Google Scholar
28. Osburn, C.M., Brat, T., Sharma, D., Griffis, D., Corcoran, S., Lin, S., Chu, W.-K., and Parikh, N., J. Electrochem. Soc., 135, 1490 (1988).Google Scholar
29. Nicolet, M.A. and Lau, S.S., “Formation and Characterization of Transition-Metal Silicides,” in VLSI Electronics: Microstructure Science, 6, Einspruch, Norman G., ed. (Academic Press, 1983), p. 329.Google Scholar
30. Jiang, H. and Honeycutt, J. W., unpublished result.Google Scholar
31. d'Aragona, F. Secco, J. Electrochem. Soc., 119, 948 (1972).Google Scholar
32. Fair, R.B. and Subrahmanyan, R., proceedings of the May, 1989 meeting of the Electrochemical Society, ULSI Science and Technology / 1989, to be published.Google Scholar
33. Lur, W., Cheng, J.Y., Chu, C.H., Wang, M.H., Lee, T.C., Wann, Y.J., Chao, W.Y., and Chen, L.J., Nucl. Instrum. and Meth., B39, 297 (1989).Google Scholar
34. Lur, W., Cheng, J.Y., and Chen, L.J., These Proceedings.Google Scholar
35. Ahn, S.T., Kennel, H.W., Plummer, J.D., and Tiller, W.A., J. Appl. Phys., 64, 4914 (1988).Google Scholar
36. Pretorius, R., Botha, A.P., and Lombard, J.C., Thin Solid Films, 79, 61 (1981).Google Scholar
37. Murarka, S.P. and Fraser, D.B., J. Appl. Phys., 51, 342 (1980).Google Scholar
38. D'Heurle, F.M. and Petersson, C.S., Thin Solid Films, 128, 283 (1985).Google Scholar