Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:36:48.278Z Has data issue: false hasContentIssue false

Plasticity Enhancement Processes in MoSi2-Base Materials

Published online by Cambridge University Press:  25 February 2011

R. Gibala
Affiliation:
Department Of Materials Science And Engineering, The University Of Michigan, Ann Arbor, MI 48109-2136
H. Chang
Affiliation:
Department Of Materials Science And Engineering, The University Of Michigan, Ann Arbor, MI 48109-2136
C.M. Czarnik
Affiliation:
Department Of Materials Science And Engineering, The University Of Michigan, Ann Arbor, MI 48109-2136
Get access

Abstract

Low temperature plasticity enhancement processes observed in body-centered cubic metals and B2 ordered alloys can be observed in MoSi2 in appropriate stress-temperature-strain rate regimes. We illustrate effects of surface films (ZrO2) and dispersoids (TiC) in enhancing plasticity of MoSi2 in the ductile-to-brittle transition range of temperatures, 900-1400°C. We also show, through experiments involving high temperature (1300°C) prestrain, that effective operation of dislocation generation processes can extend the low temperature range to which MoSi2 can be plastically deformed. These results illustrate that approaches to enhance toughness of MoSi2 need not be limited to ductile phases characterized by weak interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Umakoshi, Y., Sakagami, T., Hirano, T. and Yamane, T., Acta Metall. Mater. 38, 909, (1990).CrossRefGoogle Scholar
2. Umakoshi, Y., Hirano, T., Sakagami, T. and Yamane, T., High Temperature Aluminides and Intermetallics, Whang, S.H. et al. , TMS, Warrendale, PA, p. 111, 1990.Google Scholar
3. Kimura, K., Nakamura, M. and Hirano, T. J. Mater. Sci. 25, 2487, (1990).CrossRefGoogle Scholar
4. Maloy, S.A., Ph.D. Thesis, Case Western Reserve University, Cleveland, Ohio, 1993.Google Scholar
5. Gibala, R., Ghosh, A.K., Aken, D.C. Van, Srolovitz, D.J., Basu, A., Chang, H., Mason, D.P. and Yang, W., Mater. Sci. Eng. A 155, 147, (1992).CrossRefGoogle Scholar
6. Sadananda, K., Feng, C.R., Jones, H. and Petrovic, J.J., Mater. Sci. Eng. A155, 227 (1992)CrossRefGoogle Scholar
7. Sadananda, K. and Feng, C.R., High Temperature Silicides and Refractory Alloys, Bewlay, B.P. et al. , eds., MRS Symposium Series 322 (1994).Google Scholar
8. Aikin, R.M. Jr., Scripta Metall. Mater. 2&, 1025 (1992).CrossRefGoogle Scholar
9. Vasudevan, A.K. and Petrovic, J.J., Mater. Sci. Eng. A 155, 1, (1992).CrossRefGoogle Scholar
10. Noebe, R.D. and Gibala, R., Structure and Deformation of Boundaries, Subramanian, K. and Imam, M.A., eds., The Metallurgical Society, AIME, Warrendale, PA, p. 89, 1986.Google Scholar
11. Noebe, R.D., Misra, A. and Gibala, R., ISIJ International 31, 1172, (1991).CrossRefGoogle Scholar
12. Yamaguchi, M., Mechanical Properties of BCC Metals, Meshi, M., ed., TMS-AIME, Warrendale, PA, p. 31, 1982.Google Scholar
13. Sethi, V.K. and Gibala, R., Phil. Mag. 37,419 (1978).CrossRefGoogle Scholar
14. Maloy, S.A., Heuer, A.H., Lewandowski, J.J. and Mitchell, T.E., Acta Metall. Mater., 40, 3159, (1992).CrossRefGoogle Scholar
15. Mitchell, T.E., High Temperature Silicides and Refractory Alloys, Bewlay, B.P. et al. , eds., MRS Symposium Series 322 (1994).Google Scholar
16. Boldt, P.H., Embury, J.D., and Weatherly, G.C., Mater. Sci. Eng. A 155, 251, (1992).CrossRefGoogle Scholar
17. Schwarz, R.B., Srinivasan, S.R., Petrovic, J.J. and Maggiore, C.J., Mater. Sci. Eng. A 155, 75, (1992).CrossRefGoogle Scholar
18. Johnston, W.G., J. Appl. Phys. 33, 2716, (1962).CrossRefGoogle Scholar
19. Hack, J.E., Brzeski, J.M. and Darolia, R., Scripta Metall. Mater. 27. 1259 (1992).CrossRefGoogle Scholar
20. H. Chang and Gibala, R., High Temperature Silicides and Refractory Alloys, Bewlay, B.P. et al. , eds., MRS Symposium Series 322 (1994).Google Scholar
21. Ghosh, A.K. and Basu, A., High Temperature Silicides and Refractory Alloys, Bewlay, B.P. et al. , eds., MRS Symposium Series 322 (1994).Google Scholar
22. Noebe, R.D. and Gibala, R., Scripta Metall. 2M, 1635 (1986).CrossRefGoogle Scholar
23. Bowman, K.J., Hartfield-Wtinsch, S.E. and Gibala, R., Scripta Metall. Mater. 2a, 1529 (1992).CrossRefGoogle Scholar
24. Petrovic, J.J., Bhattacharya, A.K., Honnell, R.E., Mitchell, T.E., Wade, R.K., and McClellan, K.J., Mater. Sci. Eng. 155A, 259 (1992).CrossRefGoogle Scholar
25. Czarnik, C.M., Gibala, R., Nastasi, M. and Garrett, J.D., High Temperature Silicides and Refractory Alloys, Bewlay, B.P. et al. , eds., MRS Symposium Series 322 (1994).Google Scholar
26. Li, W.B., Henshall, J.L., Hooper, R.M. and Easterling, K.E., Acta Metall. Mater. 32, 3099, (1991).CrossRefGoogle Scholar
27. Czarnik, C.M., Thesis, M.S., University of Michigan, Ann Arbor, MI, 1993.Google Scholar
28. Chang, H., Kung, H. and Gibala, R., Intermetallic Matrix Composites II, Miracle, D.B. et al. , eds., MRS Symposium Series 273. 253 (1992).Google Scholar