Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:54:40.006Z Has data issue: false hasContentIssue false

Plastic Flow of L12 Ordered Alloys

Published online by Cambridge University Press:  21 February 2011

D. P. Pope
Affiliation:
University of Pennsylvania, Department of Materials Science and Engineering, 3231 Walnut Street, Philadelphia, PA 19104, USA
V. Vitek
Affiliation:
University of Pennsylvania, Department of Materials Science and Engineering, 3231 Walnut Street, Philadelphia, PA 19104, USA
Get access

Abstract

The flow stress of many L12 ordered alloys has a very unusual temperature dependence: the flow stress increases with increasing temperature. This unusual behavior is related to the nature of dislocation dissociation and core structure. The flow stress increase is the result of thermally activated cross slip of [101] screw dislocations to the (010) plane which is accompanied by a transformation of the dislocation core from a glissile to a sessile form. Thus dislocations which are mobile on (111) planes become immobile after cross-slip into (010) planes. The dependence of the flow stress on temperature, orientation and sense of the applied uniaxial stress will be discussed in the light of this cross slip model for Ni3Al, Ni3Ga and for γ/γ′ nickel base superalloys.

The response of Ni3Al to cyclic plastic strains (plastic strain controlled fatigue) will also be shown to be in accord with the cross slip model. The mean stress in such a test becomes compressive or tensile, depending on the orientation of the sample, even though the net plastic strain is zero after each cycle.

The strengthening of Ni3Al by ternary additions will also be discussed. It will be shown that ordinary solid solution strengthening models are not applicable but that the cross slip model can also be applied.

Finally, it will be shown that dislocation core simulation studies predict that there should also be a class of L12 ordered alloys that show a “normal” flow stress-temperature behavior, i.e., the flow stress increases at low temperatures. The results of our studies on Pt3Al will be used to illustrate this behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Westbrook, J. H., Trans. TMS-AIME, 209, 898 (1959).Google Scholar
2. Flinn, P. A., Trans. TMS-AIME, 218, 14–5 (1960).Google Scholar
3. Davies, R. G. and Stoloff, N. S.,Trans. TMS-AIME, 233, 714 (1965).Google Scholar
4. Johnston, T. L., McEvily, A. J. and Tetelman, A. S., High Strength Materials (Zackay, V. F., ed.), pp. 363381, Wiley, New York, 1965.Google Scholar
5. Copley, S. M. and Kear, B. H., Trans. AIME, 239, 977 (1967).Google Scholar
6. Pope, D. P., Phil. Mag. 25, 917 (1972).Google Scholar
7. Staton-Bevan, A. E. and Rawlings, R. D., Phys. Stat. Solidi(a), 29, 613 1975.Google Scholar
8. Kear, B. H. and Hornbecker, M. F., Trans. ASM, 59, 155 (1966).Google Scholar
9. Thornton, P. H., Davies, R. G. and Johnston, T. L., Met. Trans., 1A, 207 (1970).Google Scholar
10. Mulford, R. A. and Pope, D. P., Acta Met., 21, 1375 (1973).Google Scholar
11. Takeuchi, S. and Kuramoto, E., Acta Met., 21 45 (1973).Google Scholar
12. Ezz, Salah S., Pope, D. P. and Paidar, V., Acta Met., 30, 921 (1982).Google Scholar
13. Kear, B. H. and Wilsdorf, H. G. F., Trans. TMS-AIME, 224, 382 (1962).Google Scholar
14. Pak, H. R., Saburi, T. and Nenno, S., Trans. Jap. Inst. Metals, 18, 617 (1977).Google Scholar
15. Saburi, T., Hamona, T., Nenno, S. and Pak, H. R., Jap. J. Appl. Phys., 16, 267 (1977).CrossRefGoogle Scholar
16. Kuramoto, E. and Pope, D. P., Acta Met., 26, 207 (1978).Google Scholar
17. Aoki, K. and Izumi, O., Acta Met., 26, 125–7 (1978).CrossRefGoogle Scholar
18. Lall, C., Chin, S. and Pope, D. P., Met. Trans., 10A, 1323 (1979).CrossRefGoogle Scholar
19. Paidar, V., Pope, D. P. and Vitek, V., Acta Met., 32, 435 (1984).Google Scholar
20. Yamaguchi, M., Paidar, V., Pope, D. P. and Vitek, V., Phil. Mag., 45, 867 (1982).Google Scholar
21. Paidar, V., Yamaguchi, M., Pope, D. P. and Vitek, V., Phil. Mag., 45, 883 (1982).CrossRefGoogle Scholar
22. Friedel, J., in Dislocations and Mechanical Pro erties of Crystals, (Fisher, J. C., Johnston, W. G., Thomson, R. and Vreeland, T. Jr., ed.) pp. 330–32, John Wiley, New York (1957).Google Scholar
23. Escaig, B., in Dislocation Dynamics, (Rosenfield, A. R., Hahn, G. T., Bemet, A. L. Jr. and Jaffee, R. I., ed.) pp. 655–77, McGraw-Hill, New York (1968).Google Scholar
24. Umakoshi, Y., Pope, D. P. and Vitek, V., Acta Met., 32, 449 (1984).CrossRefGoogle Scholar
25. Ezz, Salah S., Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA (1984).Google Scholar
26. Heredia, F. E., M.S. Dissertation, University of Pennsylvania, School of Engineering and Applied Science, Philadelphia, PA (1984).Google Scholar
27. Wee, D. M., Noguchi, O., Oya, Y. and Suzuki, T., Trans. JIM, 21, 237 (1980).Google Scholar
28. Wee, D. M., Pope, D. P. and Vitek, V., Acta Met., 32, 829 (1984).Google Scholar
29. Jablonski, D.. and Sargent, S.,Scripta Met., 15, 1003 (1981).Google Scholar
30. Ezz, Salah S. and Pope, D. P., Scripta Met., 16, 117 (1982).CrossRefGoogle Scholar
31. Anton, D., Scripta Met., 16, 479 (1982).Google Scholar
32. Mughrabi, H. and Wuthrich, C., Phil. Mag., 33, 963 (1976).CrossRefGoogle Scholar
33. Mughrabi, H., Ackermann, F. and Herz, K. in Fatique Mechanisms (Fong, J. T., ed.), ASTM STP 675, p. 69, ASTM, Philadelphia (1979).Google Scholar
34. Ezz, Salah S. and Pope, D. P., Int. Metals Rev., 29, 136 (1984).Google Scholar
35. Ochiai, S., Oya, Y. and Suzuki, T., Acta Met., 32,289 (1984).Google Scholar
36. Aoki, K. and Izumi, O., Phys. Stat. Sol. (a), 37, 657 (1975).Google Scholar
37. Wee, D. M. and Suzuki, T., Trans. Jap. Inst. Met., 20, 634 (1979).Google Scholar
38. Wee, D. M., Noguchi, O., Oya, T. and Suzuki, T., Trans Jap. Inst. Met., 21, 237 (1980).Google Scholar
39. Suzuki, T., Oya, Y. and Ochiai, S., Met. Trans. 15A, 173 (1984).Google Scholar
40. Kear, B. H. and Pope, D. P., in Refractory Elements in Superalloys - Effects and Availability, Proc. USA-Brazil Con. on Superalloys, Tien, J., ed., ASM, 1984.Google Scholar