Published online by Cambridge University Press: 18 March 2013
Ultraviolet (UV) photoconductivity in pure ZnO thin films and metal (Ag, Au, Pt) nanoparticles (NPs) dispersed on ZnO thin films based UV photodetectors biased at 5 V for ultra violet radiation of λ = 365 nm and intensity = 24 µwatt/cm2 has been studied. All the three metal (Ag, Au, Pt) NPs synthesized by Polyol process when dispersed on the surface of 100 nm thin ZnO film results in enhanced photoconductive gain (K) in comparison to pure ZnO (3.1×103). An increase of about an order in K has been obtained in the case of Ag NPs/ZnO and Au NPs/ZnO UV photodetectors ( K = 6.9×104 and 5.3×104 respectively). On the other hand, Pt NPs enhance K by about two orders (5.0×105). Such an enhanced photoconductive gain has been achieved due to the lowering of dark current after dispersing the metal NPs on the surface of ZnO and increased photocurrent upon UV illumination. This may be attributed to the plasmon propagating property in metal NPs which enhances the light trapping through optical absorption in ZnO thin film surface (high photo current).