Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T00:30:20.296Z Has data issue: false hasContentIssue false

Plasma-Enhanced Chemical Vapor Deposition of ZrF4-Based Fluoride Glass Film and Oxygen Doping Effects on Glass Forming Ability

Published online by Cambridge University Press:  15 February 2011

K. Fujiura
Affiliation:
NTTOpto-Electronics Laboratories, Tokai, Ibaraki, 319–11 JAPAN
Y. Nishida
Affiliation:
NTTOpto-Electronics Laboratories, Tokai, Ibaraki, 319–11 JAPAN
K. Kobayashi
Affiliation:
NTTOpto-Electronics Laboratories, Tokai, Ibaraki, 319–11 JAPAN
S. Takahashi
Affiliation:
NTTOpto-Electronics Laboratories, Tokai, Ibaraki, 319–11 JAPAN
Get access

Abstract

ZrF4-based binary glass film is synthesized for the first time by plasma-enhanced chemical vapor deposition (PCVD). The optical transmission spectrum is measured and the effects of oxygen doping on the glass forming ability are clarified. No absorption band caused by OH or other impurities is observed in the near IR region. Weak absorption bands attributed to defect centers are observed in the UV to visible region. The glass forming region in the ZrF4-BaF2 system is significantly improved by oxygen doping. Oxygen ions are distributed homogeneously in the fluoride glass film by PCVD and improve its stability against crystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Shibata, S., Horiguchi, M., Jinguji, K., Mitachi, S. and Manabe, T.: Electron. Lett. 12, 775 (1981).10.1049/el:19810544Google Scholar
[2] Carter, S. F., Moore, M. W., Szebesta, D., Williams, J. R., Ranson, D. and France, P. W.:Electron. Lett., 25 2115 (1990).10.1049/el:19901361Google Scholar
[3] Fujiura, K., Ohishi, Y. and Takahashi, S.: Jpn. J. Appl. Phys. 28, L147 (1989).10.1143/JJAP.28.L147CrossRefGoogle Scholar
[4] Fujiura, K., Ohishi, Y. and Takahashi, S.: Extended Abstracts of 6th Int. Symp. Halide Glases (Clausthal-Zellerfeld, October, 1989), p275.Google Scholar
[5] Carter, S. F., France, P. W., Moore, M. W. and Williams, J. R.: Extended Abstracts of 3rd Int. Symp. Halide Glasses (Rennes, June, 1985), Part2.Google Scholar
[6] Lu, G. and Aggarwal, I.: Extended Abstracts of 4th Int. Symo. Halide Glasses (Monterey, January, 1987), p 21.Google Scholar
[7] Bradly, J., Lu, G. and Robinson, M.: Extended Abstracts of 4th Int. Symo. Halide Glasses (Monterey p 62.Google Scholar
[8] Ohishi, Y., Kanamori, T. and Mitachi, S.: Mat. Res. Bull. 12, 1563 (1982).10.1016/0025-5408(82)90213-6Google Scholar
[9] Hattori, H., Sakaguchi, S., Kanamori, T. and Terunuma, Y.: Appl. Opt. 26, 2583 (1987).Google Scholar
[10] Mitachi, S. and Tick, P.A.: Extended Abstracts of 6th Int. Symp. Halide Glasses (Clausthal-Zellerfeld, October, 1989), p13.Google Scholar
[11] Mitachi, S., Sakaguchi, S., Yonezawa, H., Shikano, K., Shigematsu, T. and Takahashi, S.: Jpn. J. Appl. Phys. 46, 391 (1985).Google Scholar
[12] Hefang, H. and Mackenzie, J. D.: J. Non-Crytalline Solids BD, 495 (1986).Google Scholar
[13] Shikano, K., Kobayashi, K. and Miyazawa, S.: Appl. Phys. Lett. 46, 391 (1985).10.1063/1.95588Google Scholar
[14] Friebele, E. J. and Tran, D. C.: J. Non-Cryst. Solids 72, 221 (1985).10.1016/0022-3093(85)90179-6Google Scholar
[15] Case, R., Griscom, D. L. and Tran, D. C.: J. Non-Cryst. Solids 72, 51 (1985).10.1016/0022-3093(85)90164-4Google Scholar
[16] Barin, I., Knack, O. and Kubaschewski, O.: Thermodynamic Properties of Inorganic Substances Supojlement (Verlag Sthleisen, Berlin, 1977).10.1007/978-3-662-02293-1Google Scholar
[17] Wagman, D. D., Evans, H. W., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M. and Chumey, K. L.: The NBS Tables of Chemical Thermodynamic Prooerties. J. Phys. Chem. Ref.Data 11 (1982).Google Scholar