Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:11:47.875Z Has data issue: false hasContentIssue false

Plasma Hydrogenation Studies on Low-Temperature Mbe-Grown GaAs

Published online by Cambridge University Press:  03 September 2012

O. S. Nakagawa
Affiliation:
Pennsylvania State University, Dept. of Electrical Engineering, University Park, PA 16802
S. Ashok
Affiliation:
Pennsylvania State University, Dept. of Engineering Science and Mechanics, University Park, PA 16802
K. Zhang
Affiliation:
Pennsylvania State University, Dept. of Electrical Engineering, University Park, PA 16802
D. L. Miller
Affiliation:
Pennsylvania State University, Dept. of Electrical Engineering, University Park, PA 16802
W. K. Chung
Affiliation:
Ga Sonice/Ipc, 31172 Huntwood Ave., Hayward, CA 94544
Get access

Abstract

The effect of hydrogen plasma on the electrical properties of low-temperature-grown GaAs (LT-GaAs) is reported. LT-GaAs epitaxial layers, 2μm thick were grown on a <100>, semi-insulating GaAs (SI GaAs) substrate using molecular beam epitaxy (MBE) at 300°C. Some of the samples were annealed in- situ at 600°C for 1 hour. These LT-GaAs samples were then subjected to hydrogen plasma at 300°C in a parallel-plate, low-frequency (30KHz) system for varying times up to a maximum of 13 hours. Current through the LT-GaAs layers as a function of voltage (I-V), temperature (I-T), and time (I-t) was measured between two surface contacts formed by thermal evaporation of Au. Evidence of partical defect passivation found in the electrical characteristics of hydrogenated LT GaAs is presented. These include reduced current at low temperature (<210K) and reduced current activation energy at high temperature (>320K).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Street, R. A., Hydrogenated Amorphous Silicon, (Cambridge University Press, New York, 1991).CrossRefGoogle Scholar
[2] Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).CrossRefGoogle Scholar
[3] Lindström, J. L., Oehrlein, G. S., Scilla, G. J., Yapsir, A. S., and Corbett, J. W., J. Appl. Phys. 65, 3297 (1989).CrossRefGoogle Scholar
[4] Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A. 43, 153 (1987).CrossRefGoogle Scholar
[5] Omeljanovsky, E. M., Pakhomov, A. V., and Polyakov, A. Y., J. Elec. Mat. 18, 659 (1989).CrossRefGoogle Scholar
[6] Kaminska, M., Liliental-Weber, Z., Weber, E. R., George, T., Kortright, J. B., Smith, F. W., Tsar, B-Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881 (1989).CrossRefGoogle Scholar
[7] Look, D. C., Walters, D. C., Manasreh, M. O., Sizelove, J. R., Stutz, C. E., and Evans, K. R., Phy. Rev. B 42, 3578 (1990).CrossRefGoogle Scholar
[8] Warren, A. C., Woodall, J. M., Freeouf, J. L., Grischkowsky, D., Melloch, D. T., and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).CrossRefGoogle Scholar
[9] Frankéi, M. Y., Whitaker, J. F., Mourou, G. A., Smith, F. W., and Calawa, A. R., IEEE Trans. Electron Devices 37, 2493 (1990).CrossRefGoogle Scholar
[10] Metze, G. M. and Calawa, A. R., Appl. Phys. Lett. 42, 818 (1983).CrossRefGoogle Scholar
[11] Liliental-Weber, Z., Cooper, G., Mariella, R. Jr, and Kocot, K., J. Vac. Sci. Technol. B9, 2323 (1991).CrossRefGoogle Scholar
[12] Man, K. and Liliental-Weber, Z., Appl. Phys. Lett. 59, 3267 (1991).Google Scholar
[13] Yamamoto, H., Fang, Z-Q., and Look, D. C, Appl. Phys. Lett. 57, 1537 (1990).CrossRefGoogle Scholar