Hostname: page-component-6d856f89d9-26vmc Total loading time: 0 Render date: 2024-07-16T09:09:12.986Z Has data issue: false hasContentIssue false

Plasma Etching Characteristics of Sputtered Tungsten Films

Published online by Cambridge University Press:  25 February 2011

S. Franssila
Affiliation:
Semiconductor Laboratory, VTT, Olarlnluoma 9, SF-02200 Espoo, Finland
J. M. Molarius
Affiliation:
Semiconductor Laboratory, VTT, Olarlnluoma 9, SF-02200 Espoo, Finland
J. Saarilahti
Affiliation:
Semiconductor Laboratory, VTT, Olarlnluoma 9, SF-02200 Espoo, Finland
Get access

Abstract

The relationship between microstructure of tungsten thin films and plasma etching properties has been studied. Rutherford backscattering, nuclear reaction analysis 16O(α,α)16O, X-ray diffraction, and resistivity measurements have been used to characterize the sputter deposited films. Independent of deposition pressure, the films were all high density, low oxygen (<1 at%), low resistivity and bccot-phase. Etch rate differences of 40% were measured in pure SF6, whereas only 10% differences were seen in SF6/Cl2 and SF6/O2BCi3 plasmas. Intentional oxygen doping (up to 2 at-%) increases the etch rate in pure SF6 plasma by 75%, wherasthe etch rate in SF6/O2/BCl3 plasma only increases 25%. The role of film density (porosity) and oxygen incorporation on etching mechanism are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Petroff, P., Sheng, T. T., Sinha, A. K., Rozgonyi, G. A. & Alexander, F. B.: J. Appl. Phys. 44, No 6, 1973, p. 2545 Google Scholar
2. Adachi, S. & Susa, N., J. EIectrochem. Soc, 132, No 12, 1985, p. 2980 Google Scholar
3. Haghiri-Gosnet, A. M., Laudan, F. R., Mayeux, C. & Launols, H., J. Vac. Sci. Technol. A7, No 4, 1989, p. 2663 Google Scholar
4. Chow, T. P., Saxena, A. N., Ephrath, L. M. & Bennett, R. S., in Dry etching for microelectronics, ed. by Powell, R. A., North-Holland 1984, Vol 4, Materials processing theory and practices, ed. Wang, F. F. Y. Google Scholar
5. Rauhala, E. & Saarilahti, J., Nucl. Instrum. Meth. B 64 No 1–4, 1992, p. 734 Google Scholar
6. Suzuki, K. & Shimizu, Y., Microelectr. Eng., 13, 1991, p. 255 Google Scholar
7. Itoh, M., Mori, M. & Nadahara, S., J. Vac. Sci. Sechnol. B9, No 1, 1991, p. 149 Google Scholar
8. Hsu, R., Fu, C. Y. & Law, B., in Proc. ULSI Science and Technology (eds. Andrews, J. M. & Cellar, G. K.), PV 91–11, The Electrochemical Society, Pennington, NJ, 1991, p. 730 Google Scholar
9. Tang, C. C. & Hess, D. W., J. Electrochem. Soc, 131, No 1, 1984, p. 115 CrossRefGoogle Scholar
10. Whetten, T. J., Whetten, N. Y. & Wolf, E. D., in Proc. Tungsten and other refractory metals for VLSI Applications II, (ed. Broadbent, E. K.), Materials Research Society, Pittsburgh, Pa., 1987, p. 363,Google Scholar
11. Bensaoula, A., Strozier, J. A., Ignatlev, A., Yu, J. & Wolfe, J. C., J. Vac. Sci. Technol. A5, No 4, 1987, p. 1921 Google Scholar
12. Pelgnon, M. C., Cardinaud, Ch. & Turban, G., J. Appl. Phys. 70, No 6, 1991, p. 3314 Google Scholar
13. Bestwlck, T. D. & Oehrlein, G. S., J. Appl. Phys., 66, No 10, 1989, p. 5034 Google Scholar
14. Fracassi, F. & Coburn, J. W., J. Appl. Phys., 63, No 5, 1988, p. 1758 Google Scholar
15. Orpana, M., Blomberg, M. & Franssila, S., unpublishedGoogle Scholar
16. Rotschild, M. & Forte, A. R., Appl. Phys. Lett. 59, No 14, 1991, p. 1790 Google Scholar
17. Hosoya, T., Ohfuji, S. & Shibata, T., J. Electrochem. Soc, 131, No 5, 1984, p. 1135 Google Scholar
18. Luethje, H., Harms, M., Bruns, A. & Mackens, U., Microelect. Eng. 6, 1987, p. 259 Google Scholar
19. Tait, R. N., Dew, S. K., Smy, T. & Brett, M. J., to appear in J. Vac. Sci. Technol. A10, No 4, 1992 Google Scholar
20. Yamamoto, N., Iwata, S. & Kume, H., IEEE Trans. El. Dev., 34, No 3, 1987, p. 607 CrossRefGoogle Scholar
21. Franssila, S., Appl. Surf. Sci., 53, 1991, p. 358 Google Scholar