Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:33:56.387Z Has data issue: false hasContentIssue false

Plasma Enhancement in Direct Nitridation of Silicon and Silicon-Dioxide

Published online by Cambridge University Press:  21 February 2011

T. Ito
Affiliation:
Fujitsu Laboratories Ltd. 1677 Ono, Atsugi, Japan
I. Kato
Affiliation:
Fujitsu Laboratories Ltd. 1677 Ono, Atsugi, Japan
H. Ishikawa
Affiliation:
Fujitsu Laboratories Ltd. 1677 Ono, Atsugi, Japan
Get access

Abstract

Effects of plasma on direct nitridation of Si and SiO2 have been investigated. The reactor consisted of a quartz tube, SiC-coated carbon-susceptors and an RF-induction coil. The electrical probe technique was used to detect floating potential of the susceptor having Si substrates. The voltage distribution between the susceptor and plasma is influenced by nitridation ambient, pressure, reactor geometry and RF power. The predominant species in NH3 plasma is NH radicals which are thought to be negatively charged in an ion sheath formed around the susceptor. The Cabrera-Mott model has been successfully applied to analyze the nitridation mechanism. Plasma enhancement is mainly caused by activation of characteristic velocity of nitridation species rather than by an increase in the electric field appearing in a film. Enhancement due to fluorine incorporation is also explained with the model. Bombardment of ionic species causes sputtering and deposition resulting in damage, contamination and thickness nonuniformity. Optimizing the plasma conditions, decrease in nitridation temperature, increase in growth rate, and improvements in film composition and interfacial structure have been obtained. It has been found that the further nitridation proceeds, the lower Nss becomes. This technique offers various advantages to the VLSI dielectric process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ito, T., Nozaki, T., Ishikawa, H., and Fukukawa, Y., Dig. Tech. Papers, ISSCC, P74 (1980)Google Scholar
2. Ito, T., Nakamura, T., and Ishikawa, H., IEEE Trans. Electron Devices, 29, P498 (1982)CrossRefGoogle Scholar
3. Ito, T., Hijiya, S., Nozaki, T., Arakawa, H., Shinoda, M., and Fukukawa, Y., J. Electrochem. Soc., 125, P448 (1978)CrossRefGoogle Scholar
4. Ito, T., Nozaki, T., Arakawa, H., and Shinoda, M., Appl. Phys. Lett., 32, P330 (1978)CrossRefGoogle Scholar
5. Ito, T., Nakamura, T., and Ishikawa, H., Symp. on VLSI Tech., P72 (1981)Google Scholar
6. Terry, F. L., Jr., Aucoin, R. J., Naiman, M. L., and Senturia, S. D., IEEE Electron Devices Lett., EDL-4, P191 (1983)CrossRefGoogle Scholar
7. Ito, T., Ishikawa, H., and Fukukawa, Y., Proc. 12th Conf. on Solid-State Devices (Tokyo, 1980), Jpn. J. Appl. Phys., 20, P33 (1981)Google Scholar
8. Chang, T. T. L., Jones, H. S., Jenq, C. S., Johnson, W. S., Lee, J., Lai, S. K., and Vin, Dham, Dig. Tech. Papers, IEDM, P810 (1982)Google Scholar
9. Gupta, A., Chin, T. L., Chang, M., Reminger, A., and Perlegos, G., Dig. Tech. Paper, ISSCC, P184 (1982)Google Scholar
10. Hijiya, S., Ito, T., Nakamura, T., Ishikawa, H., and Arakawa, H., Dig. Tech. Papers, ISSCC, P116 (1982)Google Scholar
11. Taguchi, M., Ito, T., Fukano, T., Nakamura, T., and Ishikawa, H., Dig. Tech. Papers, IEDM, P400 (1981)Google Scholar
12. Sakamoto, M., Kudoh, O., Yamamoto, H., and Sekido, K., Symp. on VLSI Tech., P34 (1982)Google Scholar
13. Ito, T., Semiconductor Technologies, P69, Edited by Nishizawa, J., (OHM-North Holland, 1982)Google Scholar
14. Kato, I., Ito, T., Inoue, S., Nakamura, T., and Ishikawa, H., Jpn. J. Appl. Phys., Suppl. 21–1, P153 (1982)CrossRefGoogle Scholar
15. Ito, T., Kato, I., Nozaki, T., Nakamura, T., and Ishikawa, H., Appl. Phys. Lett., 38, P370 (1981)CrossRefGoogle Scholar
16. Wong, S. S., Oldham, W. G., and Grinolds, H. R., Symp. on VLSI Tech., P88 (1983)Google Scholar
17. Wong, S. S., Sodini, C. G., Ekstedt, T. W., Grinolds, H. R., Jackson, K. H., Kwan, S. H., and Oldham, W. G., J. Electrochem, Soc., 130, P1139 (1983)CrossRefGoogle Scholar
18. Hirayama, M., Matsukawa, T., Arima, H., Ohno, Y., Tsubouchi, N., and Nakata, H., J. Electrochem, Soc., 131, P663 (1984)CrossRefGoogle Scholar
19. Wu, C. Y. and King, C. W., J. Electrochem, Soc., 129, P1559 (1982)CrossRefGoogle Scholar
20. Ito, T., Kato, I., Nakamura, T., and Ishikawa., H. Proc. Symp. on Silicon Nitride Thin Insulating Films, P295 Edited by Kapoor, V. J. and Stein, H. J. (ECS Inc., 1983)Google Scholar
21. Polak, L., Pure and Appl. Chem., 39 P307 (1974)CrossRefGoogle Scholar
22. Hayafuji, Y. and Kajiwara, K., J. Electrochem. Soc., 129, P2101 (1982)CrossRefGoogle Scholar
23. Chang, R. P. H., Chang, C. C., and Darack, S., Appl. Phys, Lett., 36, P999 (1980)Google Scholar
24. Cabrera, N. and Mott, N. F., Theory of the Oxidation of Metals, Rept. Prog. Phys., 12, P163 (1948)Google Scholar
25. Ho, V. Q. and Sugano, T., Thin Solid Films, 95, P315 (1982)CrossRefGoogle Scholar
26. Matsumoto, O., Konuma, M., and Kanzaki, Y., J. Less-Common Met., 84, P157 (1982)CrossRefGoogle Scholar
27. Ito, T., Nozaki, T., and Ishikawa, H., J. Electrochem. Soc., 127, P2053 (1980)CrossRefGoogle Scholar