Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:11:10.612Z Has data issue: false hasContentIssue false

Plasma Deposition of Diamond-Like Carbon and Carbon-Nitride Films in an Electron Cyclotron Resonance-Radio Frequency Discharge

Published online by Cambridge University Press:  10 February 2011

Guy Turban
Affiliation:
LPCM - Institut des Matdriaux de Nantes, CNRS - Universitd de Nantes 44322 Nantes, France, [email protected]
Marjan Zarrabian
Affiliation:
LPCM - Institut des Matdriaux de Nantes, CNRS - Universitd de Nantes 44322 Nantes, France, [email protected]
Junegie Hong
Affiliation:
LPCM - Institut des Matdriaux de Nantes, CNRS - Universitd de Nantes 44322 Nantes, France, [email protected]
Get access

Abstract

Hydrogenated and nitrogenated amorphous carbon films, a-C:H and a-C:H:N, were elaborated by Plasma Enhanced Chemical Vapor Deposition (PECVD) in a dual Electron Cyclotron Resonance - Radio Frequency (ECR-RF) discharge of methane and/or nitrogen. The use of a low pressure plasma (2.6 mTorr) and a capacitive coupling of the substrate, separately from the electrical power of the ECR source, leads to reach new conditions of preparation. The ions and radicals fluxes, Φi and ΦR, determined respectively from the Langmuir probe measurements and the Mass Spectrometry (MS) give a ratio ΦRi of order of 20. The CH3 radicals were identified and their concentration was measured from the technique of threshold ionization. It is shown that, even at low pressure, numerous ion-molecule reactions take place in the gas phase which explain the formation of major ions CH5+. and C2H5+. The plasma-surface interaction is studied by in-situ kinetic ellipsometry and by ex-situ X-ray Photoelectron Spectroscopy (XPS) measurements of deposited films. The role of the impact energy of ions, during the growth of films, is studied by Ultra-Violet-Visible spectroscopic ellipsometry. A new technique of deposition by alternating sequences of «C H4 deposition - treatment by N2, plasma » is described in this paper. The resulted a-C:H:N films are compared to those elaborated from CH4-N2 plasmas. The aim of the discussion on the presented results is to better understand the mechanism of the growth of amorphous carbon films by PECVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aisenberg, S., Chabot, R., J. Appl. Phys. 42, 2953 (1971).Google Scholar
2. Holland, L., Ojha, S.M., Thin Solid Films 38, L17 (1976).Google Scholar
3 Angus, J.C., Koidl, P., Domitz, S., in Plasma deposited thin films, Mort, J., Jansen, F., CRC Press, Buca Raton, Florida 1986, p. 89.Google Scholar
4. Catherine, Y., in Properties and characterization of amorphous carbon films, Materials Science Forum 52–53 Pouch, J.J., Alterovitch, S., Trans Tech Publications, Brookfield, Vermont 1990, p. 175.Google Scholar
5. Fourches, N., Turban, G., Thin Solid Films 240, 361 (1994).Google Scholar
6. Lifchitz, Y., Diamond and Related Materials 5, 388 (1996).Google Scholar
7. Mc Kenzie, D.R., Yin, Y., Marks, N.A., Davis, C.A., Pailthorpe, B.A., Amaratunga, G.A.J., Veerasamy, V.S., Diamond and Related Materials 3, 353 (1994).Google Scholar
8. Reinke, P., Bureau, S., Klemberg-Sapieha, J.E., L. Martinu J. Appl. Phys. 78, 4855 (1995).Google Scholar
9. Godet, C., Heitz, T., Bourde, J.E., Drdvillon, B., Clerc, C., J. Appl. Phys. 84, 3919 (1998).Google Scholar
10. Weiler, M., Sattel, S., Giessen, T., Jung, K., Ehrhardt, H., Veerasamy, W.S., Robertson, J., Phys. Rev. 53, 1594 (1996).Google Scholar
11. Zarrabian, M., Fourches-Coulon, N., Turban, G., Lancin, M., Marhic, C., Diamond and Related Materials 6, 542 (1997).Google Scholar
12. Zarrabian, M., Fourches-Coulon, N., Turban, G., Marhic, C., Lancin, M., Applied Physics Letters 70, 2535 (1997).Google Scholar
13. Paret, V., Sadki, A., Bounouh, Y., Alameh, R., Naud, C., Zarrabian, M., Seignac, A., Turban, G., Thèye, M.L., J. Non-Crystalline Solids 227–230, 583 (1998).Google Scholar
14. Zarrabian, M., Turban, G., Fourches-Coulon, N., in Amorphous Carbon : state of the art, Silva, S.R. P., Robertson, J., Milne, W.I., Amaratunga, G.A.J., World Scientific, Singapore, 1998, p. 117.Google Scholar
15. Zarrabian, M., Leteinturier, C., Turban, G., Plasma Sources Science and Technology 7, 607 (1998).Google Scholar
16. Zarrabian, M., Ph. Thesis, University of Nantes, 1998.Google Scholar
17. Dagel, D.J., Mallouris, C.M., Doyle, J.R., J. Appl. Phys 79, 873 (1996).Google Scholar
18. Gogolidrs, E., Buteau, C., Rhallabi, A., Turban, G., J. Phys. D : Appl. Phys. 27, 818 (1994).Google Scholar
19. Gogolid~s, E., Mary, D., Rhallabi, A., Turban, G., Jpn J. Appl. Phys. 34, 261 (1995).Google Scholar
20. Mantzaris, N., Gogolidès, E., Boudouvis, A., Rhallabi, A., Turban, G., J. Appl. Phys 79, 3718 (1996). 99Google Scholar
21. Smolinsky, G., Vasile, M.J., Int. J. Mass. Spectrom. Ion Physics 16, 137 (1975).Google Scholar
22. Toyoda, H., Kojima, H., Sugai, H., Appl. Phys. Lett. 54, 1507 (1989).Google Scholar
23. Feurprier, Y., Cardinaud, C., Turban, G., J. Vac. Sci. Technol. BIS, 1733 (1997).Google Scholar
24. Feurprier, Y., Cardinaud, C., Grolleau, B., Turban, G., Plasma Sources Science and Technology 6, 561 (1997).Google Scholar
25. Gibson, G.W., Sawin, H.H., Tepermeister, I., Ibbotson, D.E., Lee, J.T., J. Vac. Sci. Technol. B 12, 2333 (1994).Google Scholar
26. Coburn, J.W., Kay, E., J. Appl. Phys. 43, 4965 (1972).Google Scholar
27. Hong, J., Bhattacharyya, S., Zarrabian, M., Turban, G.. The 1997 Joint International Meeting ECS - ISE, Paris, Aug. 31 - Sept 5, 1997.Google Scholar
28. Hong, J., Turban, G., Diamond and Related Materials, to be published.Google Scholar
29. Hong, J., Turban, G., J. Vac. Sci. Technol, A 17, jan/feb. 1999, in press.Google Scholar
30. Demichelis, F., Pirri, C.F., Tagliaferro, A., Phys. Rev. B 45, 14364 (1992).Google Scholar
31. Bhattacharyya, S., Hong, J., Turban, G., J. Appl. Phys. 83, 3917 (1998).Google Scholar
32. Bhattacharyya, S., Cardinaud, C., Turban, G., J. Appl. Phys. 83, 4491 (1998).Google Scholar
33. Möller, W., Fukarek, W., Lange, K., von Keudell, A., Jacob, W., Jpn J. Appl. Phys. 34, 2163 (1995).Google Scholar
34. Jacob, W., Thin Solid Films 326, 1, (1998).Google Scholar