Article contents
Plasma Damage Effects in InAlN Field Effect Transistors
Published online by Cambridge University Press: 10 February 2011
Abstract
During gate mesa plasma etching of InN/InAlN field effect transistors the apparent conductivity in the channel can be either increased through three different mechanisms. If hydrogen is part of the plasma chemistry, hydrogen passivation of the shallow donors in the InAlN can occur, we find diffusion depths for 2H of ≥ 0.5 micron in 30 mins at 200°C. The hydrogen remains in the material until temperatures ≥ 700°C Energetic ion bombardment in SF6/O2 or BCl/Ar plasmas also compensates the doping in the InAlN by creation of deep acceptor states. Finally the conductivity of the immediate InAlN surface can be increased by preferential loss of N during BCl3 plasma etching, leading to poor rectifying contact characteristics when the gate metal is deposited on this etched surface. Careful control of plasma chemistry, ion energy and stoichiometry of the etched surface are necessary for acceptable pinch-off characteristics.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 1
- Cited by