Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T09:12:26.106Z Has data issue: false hasContentIssue false

Plasma Cleaning and Nitridation of Sapphire Substrates for AlxGa1-xN Epitaxy as Studied by ARXPS and XPD

Published online by Cambridge University Press:  10 February 2011

M. Seelmann-Eggebert
Affiliation:
Fraunhofer Institut Für Angewandte Festkörperphysik, Tullastr 72, D-79108 Freiburg
H. Zimmermann
Affiliation:
Fraunhofer Institut Für Angewandte Festkörperphysik, Tullastr 72, D-79108 Freiburg
H. Obloh
Affiliation:
Fraunhofer Institut Für Angewandte Festkörperphysik, Tullastr 72, D-79108 Freiburg
R. Niebuhr
Affiliation:
Aixtron Gmbh, Kackertstr. 15–17, D-52072 Aachen, Germany
B. Wachtendorf
Affiliation:
Aixtron Gmbh, Kackertstr. 15–17, D-52072 Aachen, Germany
Get access

Abstract

The influence of plasma and thermal treatments on the structure and composition of sapphire (00–1) surfaces have been studied by hemispherically recorded x-ray photoelectron spectroscopy in view of substrate preparation for the epitaxy of GaN. Producing well-ordered surfaces, O2 plasma based treatments are found to efficiently remove surface contamination. AlN films with good short-range order are obtained by a simple high temperature nitridation step in the MOCVD reactor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yimada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Appl. Phys. Lett. 68, 2105 (1996)Google Scholar
2. Lim, B.W., Chen, Q.C., Yang, J.Y., Khan, M.A., Appl. Phys. Lett. 68, 3761 (1996)Google Scholar
3. Lin, C.F., Chi, G.C., Feng, M.S., Guo, J.D., Tsang, J.S., Minghuang Hong, J., Appl. Phys. Lett. 68, 3758 (1996)Google Scholar
4. Keller, S., Kemmer, B.P., Wu, Y.-F., Heyring, B., Kapolneck, D., Speck, J. S., Mishra, U.K., Denbaars, S.P., Appl. Phys. Lett. 68, 1525 (1996)Google Scholar
5. Molnár, R.J., Moustakas, T.D., J. Appl. Phys. 76, 4587 (1994)Google Scholar
6. Yamamoto, A., Tsujino, M., Ohkubo, M., Hashimoto, A., J. Cryst. Growth 137, 415 (1994)Google Scholar
7. Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T., Minagawa, S., J. Appl. Phys. 79, 3487 (1996)Google Scholar
8. Seelmann-Eggebert, M., Carey, G.P., Klauser, R., Richter, H.J., Surf. Sci. 287/288, 495 (1993); M. Seelmann-Eggebert, Surf. Sci.(in press)Google Scholar
9. Seelmann-Eggebert, M., Keller, R.C., Surf, and Interf. Anal. 23, 589 (1995)Google Scholar
10. Renaud, G., Vilette, B., Vilfan, I., Bourret, A., Phys. Rev. Letters 73, 1825 (1994)Google Scholar
11. Yu, Yan, Lad, R.J., Mat. Res. Soc. Symp. Proc. 317, 583 (1994)Google Scholar
12. Gautier, M., Durand, J.P., Pham Van, L., Guittet, M. J., Surf. Sci. 250, 71 (1991)Google Scholar
13. Guo, J., Ellis, D.E., Lam, D.J., Phys. Rev. B 45, 13647 (1992)Google Scholar
14. Harrison, W.A., J. Vac. Sci. Technol. 16, 1492 (1979)Google Scholar
15. Kung, P., Sun, C.J., Saxler, A., Ohsato, H., Razeghi, M., J. Appl. Phys. 75, 4515 (1994)Google Scholar