Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T16:35:26.220Z Has data issue: false hasContentIssue false

Plasma Chemistries for Dry Etching GaN, AIN, InGaN and InAIN

Published online by Cambridge University Press:  10 February 2011

S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611
C. B. Vartuli
Affiliation:
University of Florida, Gainesville FL 32611
J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611
S. M. Donovan
Affiliation:
University of Florida, Gainesville FL 32611
J. D. MacKenzie
Affiliation:
University of Florida, Gainesville FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185
G. F. McLane
Affiliation:
Army Research Laboratory, Ft. Monmouth NJ 07703
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
Get access

Abstract

Etch rates up to 7,000Å/min. for GaN are obtained in Cl2/H2/Ar or BCl3/Ar ECR discharges at 1–3mTorr and moderate dc biases. Typical rates with HI/H2 are about a factor of three lower under the same conditions, while CH4/H2 produces maximum rates of only ˜2000Å/min. The role of additives such as SF6, N2, H2 or Ar to the basic chlorine, bromine, iodine or methane-hydrogen plasma chemistries are discussed. Their effect can be either chemical ( in forming volatile products with N) or physical ( in breaking bonds or enhancing desorption of the etch products). The nitrides differ from conventional III-V's in that bondbreaking to allow formation of the etch products is a critical factor. Threshold ion energies for the onset of etching of GaN, InGaN and InAlN are ≥75eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S. I., Int. J. Mod. Phys. 8 1781 (1994).Google Scholar
2. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL 1990)Google Scholar
3. Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H. and Morkoc, H., Appl. Phys. Lett. 64 887 (1994).Google Scholar
4. Adesida, I., Ping, A. T., Youtsey, C., Dow, T., Khan, M. A., Olson, D. T. and Kuznia, J. N., Appl. Phys. Lett. 65 889 (1994).Google Scholar
5. Pearton, S. J., Abernathy, C. R., Ren, F., Lothian, J. R., Wisk, P., Katz, A. and Constantine, C., Semicond. Sci. Technol. 8 310 (1993).Google Scholar
6. McLane, G. F., Casas, L., Pearton, S. J. and Abernathy, C. R., Appl. Phys. Lett. 66 3328 (1995).Google Scholar
7. McLane, G. F., Casas, L., Lareau, R. T., Eckart, D. W., Vartuli, C. B., Pearton, S. J. and Abernathy, C. R., J. Vac. Sci. Technol. A13 724 (1995).Google Scholar
8. Shul, R. J., Kilcoyne, S. P., Hagerott-Crawford, M., Rarmeter, J. E., Vartuli, C. B., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 667 1761 (1995).Google Scholar
9. Shul, R. J., Howard, A. J., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Barnes, P. A. and Bozack, M. J., J. Vac. Sci. Technol. B13 2016 (1995).Google Scholar
10. Shul, R. J. (to be published).Google Scholar
11. Abernathy, C. R., J. Vac. Sci. Technol. A 11 869 (1993).Google Scholar
12. Pearton, S. J., Abernathy, C. R. and Vartuli, C. B., Electron. Lett. 30 1985 (1994).Google Scholar
13. Ping, A. T., Adesida, I., Khan, M. A. and Kuznia, J. N., Electron. Lett. 30 1895 (1994).Google Scholar
14. Pearton, S. J.. Abernathy, C. R. and Ren, F., Appl. Phys. Lett. 64 3643 (1994).Google Scholar
15. Shul, R. J., Ashby, C. I. H., Rieger, D. J., Howard, A. J., Pearton, S. J., Abernathy, C. R.,Vartuli, C. B., Barnes, P. A. and Barnes, P. A. and Davis, P., Mat. Res. Soc. Proc. Vol.395 (1996).Google Scholar