Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:24:40.277Z Has data issue: false hasContentIssue false

Plasma Assisted Low Temperature OMVPE of GaAs Utilizing Trimethylgallium and Trimethylarsenic Feedstock Gases

Published online by Cambridge University Press:  26 February 2011

B. G. Pihlstrom
Affiliation:
Colorado State Universit, Dept. of Electrical Engineering, Fort Collins, Colorado 80523
L. R. Thompson
Affiliation:
Colorado State Universit, Dept. of Electrical Engineering, Fort Collins, Colorado 80523
S. Asher
Affiliation:
Solar Energy Research Institute, 1617 Cole Blvd., Golden, Colorado 80401
G. J. Collins
Affiliation:
Colorado State Universit, Dept. of Electrical Engineering, Fort Collins, Colorado 80523
Get access

Abstract

A spatially confined disk shaped hydrogen plasma is used for plasma assisted organometallic vapor phase epitaxy (PAOMVPE) of GaAs at substrate temperatures from 245–430°C. Feedstock gases, trimethylgallium (TMGa) and trimethylarsenic (TMAs), are introduced downstream from the disk shaped plasma in the near afterglow. Dissociation of the organometallics is dominated by VUV photons and metastable species energy transfer reactions rather than non-selective electron impact. At the temperatures employed no thermal CVD occurs. An Arrhenius plot of the growth rate shows a low activation of 3 Kcal/mole for surface mobility. The transitional temperature from amorphous to homoepitaxial growth (300°C) is determined via electron diffraction patterns from deposited films versus substrate temperature. Increases in the feedstock gas V-III ratio resulted in decreases in absolute carbon concentration in the deposited films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Oda, S., Kawase, R., Sato, T., Shimizu, I., and Kokado, H., Appl. Phys. Lett., 48, 33 (1986).Google Scholar
2. Huelsman, A. D. and Reif, R., J. Vac. Sci. Technol., A7, 2554 (1989).Google Scholar
3. Helnecke, H., Brauers, A., Luth, L., and Balk, P., J. Crystal Growth, 77, 241 (1986).Google Scholar
4. Fujita, S., Imaizumi, M., Araki, S., Takeda, Y., and Sasaki, A., J. Crystal Growth, 93, 1 (1988).Google Scholar
5. Deitze, W. T, Ludowise, M. J., and Cooper, C. B., Electron. Lett., 17. 698 (1981).Google Scholar
Kou, C. P., Cohen, R. M., and Stringfellow, G. B., J. Cryst. Growth, 64, 461 (1983).Google Scholar
Blaauw, C., Miner, C., Eraraerstorfer, B., SpringThrope, A. J., and Gallant, M., Can. J. Phys., 63, 664 (1985).Google Scholar
Vook, D. W, Reynolds, S., and Gibbons, J. F., Appl. Phys. Lett., 50. 1386 (1987).Google Scholar
Fraas, L. M., Mcleod, P. S., Weiss, R. E., Partain, L., and Cape, J. A., J. Appl. Phys., 62, 299 (1987).Google Scholar
6. Stringfellow, G. B., J. Electronic Mater., 17, 327 (1988).Google Scholar
7. Yu, Z., Sheng, T., Lou, Z., and Collins, G. J., Appl. Phys. Lett., 57, 1873 (1990).Google Scholar
8. Sheng, T., Pihlstrom, B. G., Yu, Z., and Collins, G. J., Appl. Phys. Lett., 55, 2411 (1989).Google Scholar
9. Pihlstrom, B. G., Sheng, T., Yu, Z. and Collins, G. J., Symposium on Characterization of Plasma Enhanced CVD Processes. Materials Research Society, Fall 1989, Boston MA.Google Scholar
10. Joy, D., Newbury, D., and Davidson, D., J. Appl. Phys., 53, R81 (1982).Google Scholar