Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:41:46.646Z Has data issue: false hasContentIssue false

Plasma and Ion Beam Tools for Enhanced Battery Electrode Performance

Published online by Cambridge University Press:  03 September 2012

A. Anders
Affiliation:
Plasma Applications Group, Accelerator & Fusion Res. Div. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
F. Kong
Affiliation:
Energy & Environment Div. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
Y. Chen
Affiliation:
Department of Material Sciences, University of California, Berkeley, California 94720
O. R. Monteiro
Affiliation:
Plasma Applications Group, Accelerator & Fusion Res. Div. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
F. R. McLarnon
Affiliation:
Energy & Environment Div. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
I. G. Brown
Affiliation:
Plasma Applications Group, Accelerator & Fusion Res. Div. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
Get access

Abstract

Plasma and ion beam methods such as gas and metal ion implantation, plasma immersion ion implantation (PIII), and metal plasma immersion ion implantation and deposition (MePIIID) are introduced as powerful tools to modify the properties of battery electrodes. Three kinds of rechargeable electrochemical cells have been investigated: the lead-acid cell, the nickel alkaline-electrolyte cell, and the lithium cell. It was experimentally shown that (i) metal ion implantation of Ti, V, Cr, Ni, and W into lead and lead-antimony electrodes reduced the corrosion current by more than one order of magnitude, (ii) cobalt ion implantation into nickel electrodes enhanced the interconversion of Ni(OH)2 to NiOOH and the associated cycle life, (iii) nitrogen-PIII resulted in the formation of a nitrided lithium layer on lithium which stabilized the surface against corrosion, (iv) MePIIID with a tungsten plasma reduced the pitting corrosion of aluminum, a current collector for a lithium battery.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Eckstein, W. and Philips, V., “Physical sputtering and radiation-enhanced sublimation,” in Physical Processes of the Interaction of Fusion Plasmas with Solids. New York: Academic Press, 1996, pp. 93133.Google Scholar
[2] Eckstein, W., Computer Simulation of Ion-Solid Interactions. Berlin: Springer-Verlag, 1991.Google Scholar
[3] Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids. New York: Pergamon Press, 1985.Google Scholar
[4] Forrester, A. T., Large Ion Beams. New York: John Wiley & Sons, 1988.Google Scholar
[5] Wolf, B., Handbook of Ion Sources. Boca Raton: CRC Press, 1995.Google Scholar
[6] Ensinger, W., “Ion sources for ion beam assisted deposition,” Rev. Sci. Instrum., vol.63, pp. 52175233, 1992.Google Scholar
[7] Cuomo, J. J., Rossnagel, S. M., and Kaufman, H. R., Handbook of Ion Beam Processing and Technology. Park Ridge: Noyes Publications, 1989.Google Scholar
[8] Conrad, J. R., Radtke, J. L., Dodd, R. A., Worzala, F. J., and Tran, N. C., “Plasma source ion-implantation technique for surface modification,” J. Appl. Phys., vol.62, pp. 45914596, 1987.Google Scholar
[9] Conrad, J. R., “Method and apparatus for plasma source ion implantation,” US Patent 4,764,394. USA, 1988.Google Scholar
[10] En, W. and Cheung, N. W., “Analytical modeling of plasma immersion ion implantation target current using the SPICE circuit simulator,” J. Vac. Sci. Technol. B, vol.12, pp. 833837, 1994.Google Scholar
[11] Collins, G. A. and Tendys, J., “Sheath development around a high-voltage cathode,” Plasma Sources Sci. Technol., vol.3, pp. 1018, 1994.Google Scholar
[12] Reass, W. A., “Survey of high-voltage pulse technology suitable for large-scale plasma source ion implantation processes,” J. Vac. Sci. Technol. B, vol.12, pp. 854860, 1994.Google Scholar
[13] “Papers of the First Int. Workshop on Plasma-Based Ion Implantation,” J. Vac. Scd. Technol. B, vol.12, pp. 815–997, 1994.Google Scholar
[14] “Papers of the 2nd Int. Workshop on Plasma Based Ion Implantation,” Surf Coat. Technology, vol.85, pp. 1–119, 1993.Google Scholar
[15] Brown, I. G., Galvin, J. E., and MacGill, R. A., “High current ion source,” Appl. Fhys. Lett., vol.47, pp. 358360, 1985.Google Scholar
[16] Brown, I. G., Dickinson, M. R., Galvin, J. E., and MacGill, R. A., “A broad-beam, highcurrent metal-ion implantation facility,” Nucl. Instrum. Meth. Phys. Res., vol. B55, pp. 506510, 1991.Google Scholar
[17] Brown, I. G., “Vacuum arc ion sources,” Rev. Sci. Instrum., vol.65, pp. 30613081, 1994.Google Scholar
[18] Brown, I. G., Anders, A., Anders, S., Dickinson, M. R., MacGill, R. A., and Oks, E. M., “Recent advances in vacuum arc ion sources,” Surf & Coat. Technol., vol.84, pp. 550556, 1996.Google Scholar
[19] Mesyats, G. A. and Proskurovsky, D. I., Pulsed Electrical Discharge in Vacuum. Berlin: Springer-Verlag, 1989.Google Scholar
[20] Brown, I. G. and Godechot, X., “Vacuum arc ion charge-state distributions,” IEEE Trans. Plasma Sci., vol.19, pp. 713717, 1991.Google Scholar
[21] Anders, A., “Ion charge state distributions of vacuum arc plasma: The origin of species,” Phys. Rev. E, vol.55, in print, Jan. 1997.Google Scholar
[22] Brown, I. G., Godechot, X., and Yu, K. M., “Novel metal ion surface modification technique,” Appl. Phys. Lett., vol.58, pp. 13921394, 1991.Google Scholar
[23] Brown, I. G., Anders, A., Anders, S., Dickinson, M. R., Ivanov, I. C., MacGill, R. A., Yao, X. Y., and Yu, K.-M., “Plasma synthesis of metallic and composite thin films with atomically mixed substrate bonding,” Nucl. Instrum. Meth. Phys. Res. B, vol.80/81, pp. 12811287, 1993.Google Scholar
[24] Anders, A., Anders, S., Brown, I. G., Dickinson, M. R., and MacGill, R. A., “Metal plasma immersion ion implantation and deposition using vacuum arc plasma sources,” J. Vac. Sci. Technol. B, vol.12, pp. 815820, 1994.Google Scholar
[25] Aksenov, I. I., Belous, V. A., and Padalka, V. G., “Apparatus to rid the plasma of a vacuum arc of macroparticles,” Instrum. Exp. Tech., vol.21, pp. 1416–18, 1978.Google Scholar
[26] Anders, A., Anders, S., and Brown, I. G., “Transport of vacuum arc plasmas through magnetic macroparticle filters,” Plasma Sources Sci. & Technol., vol.4, pp. 112, 1995.Google Scholar
[27] Boxman, R. L. and Goldsmith, S., “Macroparticle contamination in cathodic arc coatings,” Surf. & Coat. Technol., vol.52, pp. 3950, 1992.Google Scholar
[28] Anders, S., Anders, A., and Brown, I., “Macroparticle-free thin films produced by an efficient vacuum arc deposition technique,” J. Appl. Phys., vol.74, pp. 42394241, 1993.Google Scholar
[29] Anders, S., Raoux, S., Krishnan, K., MacGill, R. A., and Brown, I. G., “Plasma distribution of cathodic arc deposition systems,” J. Appl. Phys., vol.79, pp. 67856790, 1996.Google Scholar
[30] Anders, A. and Anders, S., “The working principle of the hollow-anode plasma source,” Plasma Sources Sci. Technol., vol.4, pp. 571575, 1995.Google Scholar
[31] Salkind, A. J., Kelley, J. J., and Cannone, A. G., “Lead-Acid Batteries,” in Handbook of Batteries, Linden, D., Ed., 2nd ed. New York: McGraw Hill, 1995, pp. 24.1–24.89.Google Scholar
[32] Yao, X. Y., Kumai, C. S., Devine, T. M., Fojas, P. B., Ivanov, I. C., Yu, K.-M., and Brown, I. G., “The pitting corrosion behavior of aluminum ion implanted with titanium,” Nucl. Instrum. Meth. Phys. Res., vol. B80/81, pp. 267270, 1993.Google Scholar
[33] Zhang, S. T., Kong, F. P., and Muller, R. H., “Effect of ion implantation on the corrosion behavior of lead and lead-antimony alloy,” J. Electrochem. Soc., vol.141, pp. 26772681, 1994.Google Scholar
[34] Linden, D., Handbook of Batteries, 2nd ed. New York: McGraw-Hill, 1994.Google Scholar
[35] Crocker, R. W. and Muller, R. H., “Structural transformation of nickel hydroxide films during anodic oxidation,” Lawrence Berkeley Laboratory, Berkeley, LBL-Preprint 32136, 1992.Google Scholar
[36] Anders, S., Anders, A., Brown, I., Kong, F., and McLarnon, F., “Surface modification of nickel battery electrodes by cobalt plasma immersion ion implantation and deposition,” Surf. & Coat. Technol., vol.85, pp. 7579, 1996.Google Scholar
[37] Muller, R. H. and Farmer, J. C., “Fast, self-compensating, spectral-scanning ellipsometer,” Rev. Sci. Instrum., vol.55, pp. 371374, 1984.Google Scholar
[38] Muller, R. H., in Techniques for the Characterizationo f Electrodes and Electrochemical Processes, Varma, R. and Selman, J. R., Eds. New York: Wiley, 1991, pp. 31125.Google Scholar
[39] Huggins, R. A., “Crystal structures and fast ionic conduction,” in Solid Electrolytes, Hagenmuller, P. and Gool, W. v., Eds. New York: Academic Press, 1978, pp. 2744.Google Scholar
[40] Schwager, F. J. and Muller, R. H., The Electrochem. Soc. Extended Abstracts, vol.82–2, Abs. 295, pp. 478, 1982.Google Scholar
[41] Thevenin, J. G. and Muller, R. H., “Study of the Li/Li3N electrode in an organic electrolyte,” J. Electrochem. Soc., vol.134, pp. 26502656, 1987.Google Scholar
[42] Koksbang, R., “Layer for stabilization of lithium anode,” US Patent No. 5,487,959. USA, 1996.Google Scholar
[43] Fauteux, D. G., Buren, M. V., Shi, J., and Rona, M., “Secondary electrolytic cell and electrolytic process,” US Patent No. 5,434,021. USA, 1995.Google Scholar
[44] Anani, A. A., “Multilayered electrolyte and electrochemical cells used same,” US Patent No. 5,387,482. USA, 1995.Google Scholar
[45] Schlaikjer, C., Epstein, J., and Riley, S. T., “Method for making a lithium anode for an electrochemical cell,” US Patent No. 5,318,600. USA, 1994.Google Scholar
[46] Chen, Y., Devine, T. M., and Evans, J. W., “Corrosion of aluminum current collector in the Li/PEO-LiN(CF3SO2)2/V6O13 battery,” presented at Fall Meeting of the Electrochem. Soc., San Antonio, Texas, 1996.Google Scholar
[47] Chen, Y., Devine, T. M., Evans, J. W., and Monteiro, O. R., to be submitted to J. Electrochem. Soc., 1996.Google Scholar