Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:50:04.776Z Has data issue: false hasContentIssue false

PL and FTIR Absorption Study on Porous Silicon in Situ During Etching, in Oxygen Ambient, and After Chemical Oxidation

Published online by Cambridge University Press:  28 February 2011

G. Mauckner
Affiliation:
Halbleiterphysik, Universität Ulm 7900 Ulm, GERMANY
T. Walter
Affiliation:
Halbleiterphysik, Universität Ulm 7900 Ulm, GERMANY
T. Baier
Affiliation:
Halbleiterphysik, Universität Ulm 7900 Ulm, GERMANY
K. Thonke
Affiliation:
Halbleiterphysik, Universität Ulm 7900 Ulm, GERMANY
R. Sauer Abteilung
Affiliation:
Halbleiterphysik, Universität Ulm 7900 Ulm, GERMANY
Get access

Abstract

Steady state and time-resolved photoluminescence (PL) and Fourier-transform infrared (FTIR) spectroscopy have been performed in situ during etching, on “as prepared” porous Si in air under laser exposure and on chemically oxidized porous Si. We suppose that PLdegradation of “as prepared” porous Si is caused by creating non-radiative defect centers during photooxidation. Chemically oxidized porous Si shows increased PL intensity and longer recombination lifetimes as compared to non-oxidized samples. We conclude, that an oxide layer with low defect density on the inner surface of chemically oxidized porous Si reduces the non-radiative recombination rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991)Google Scholar
[2] Mauckner, G., Thonke, K. and Sauer, R., J. Phys.: Condensed Matter (in print, 1992)Google Scholar
[3] Münder, H., Frohnhoff, St., Lüth, H. (unpublished)Google Scholar
[4] Vial, J.C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Müller, F., Romestain, R. and Macfarlane, R.M., Phys. Rev. B 45, 14171 (1992)Google Scholar
[5] Shih, S., Tsai, C., Li, K.-H., Jung, K.H., Campbell, J.C. and Kwong, D.L., Appl. Phys. Lett. 60, 633 (1992)Google Scholar
[6] Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F. and Lehmann, V., Appl. Phys. Lett., (to be published) (1992)Google Scholar
[7] Kato, Y., Ito, T. and Hiraki, H., Jpn. J. Appl. Phys., 27, L1406 (1988)Google Scholar
[8] Ponpon, J.P. and Bourdon, B., Solid State Electron. 25, 875 (1982)Google Scholar
[9] Prokes, S.M., Glembocki, O.J., Bermudez, V.M. and Kaplan, R., Phys. Rev. B 45, 13788 (1992)Google Scholar
[10] Koba, R., Monkowski, J.R., and Tressler, R.E., Mater. Sci. Res. 19, 301 (1985)Google Scholar