Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:01:28.403Z Has data issue: false hasContentIssue false

Pl And Epr Spectroscopy Of Point Defects In Detector-Grade Cd1−xZnxTe

Published online by Cambridge University Press:  10 February 2011

C. I. Rablau
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506–6315
S. D. Setzler
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506–6315
L. E. Halliburton
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506–6315
F. P. Doty
Affiliation:
Digirad Corporation, San Diego, CA 92121
N. C. Giles
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506–6315
Get access

Abstract

Cadmium zinc telluride (CdZnTe) is an emerging material for room-temperature x-ray and gamma ray detectors. The identification and control of point defects and charge compensators are currently important issues. Low-temperature photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies have been used to characterize point defects in CdZnTe crystals grown by the high-pressure Bridgman technique. Luminescence due to shallow donors, shallow acceptors, and deeper acceptors was monitored for a series of samples. An isotropic EPR signal attributed to shallow hydrogenic donors is observed in all samples, and the concentration of shallow donors has been determined. The nature of the defect centers (impurities, vacancies, vacancy-impurity complexes), and the correlation between defect concentration and device performance is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. James, R. B., Schlesinger, T. E., Lund, J., and Schieber, M., “Cdl−xZnxTe Spectrometers for Gamma and X-Ray Applications”, Chapter 9, in Semiconductors and Semimetals Vol.43, eds. Schlesinger, T. E. and James, R. B. (Academic Press, San Diego, 1995).Google Scholar
2. Butler, J. F., Apotovsky, B., Niemela, A., and Sipila, H., Proc. SPIE Vol.2009 (SPIE, Bellingham, WA, 1993), p. 121.Google Scholar
3. Ruzin, A. and Nemirovsky, Y., J. Appl. Phys. 82, 4166 (1997).Google Scholar
4. Chen, H., Tong, J., Hu, Z., Shi, D. T., Wu, G. H., Chen, K.-T., George, M. A., Collins, W. E., Burger, A., James, R. B., Stahle, C. M., and Bartlett, L. M., J. Appl. Phys. 80, 3509 (1996).Google Scholar
5. Hjelt, K., Juvonen, M., Tuomi, T., Nenonen, S., Eissler, E. E., and Bavdaz, M., Phys. Stat. Sol. (a) 162, 747 (1997).Google Scholar
6. Zimmerman, H., Boyn, R., Lehr, M. U., Schulz, H.-J., Rudolph, P., and Komack, J.-Th., Semicond. Sci. Technol. 9, 1598 (1994).Google Scholar
7. Worschech, L., Ossau, W., and Landwehr, G., Phys. Rev. B 52, 13965 (1995).Google Scholar
8. Rablau, C. I., Setzler, S. D., Halliburton, L. E., Giles, N. C., and Doty, F. P., submitted to J. Electron. Mater.Google Scholar
9. Magnea, N., Dal'bo, F., Pautrat, J. L., Million, A., Cioccio, L. Di, and Feuillet, G., in Materials for Infrared Detectors and Sources, edited by Farrow, R. F. C., Schetzina, J. F., and Cheung, J. T. (Mater. Res. Soc. Proc. 90, Pittsburgh, PA, 1987), pp. 455462.Google Scholar
10. Lee, J., Giles, N. C., and Summers, C. J., Phys. Rev. B 49, 11459 (1994).Google Scholar
11. Lee, J. and Giles, N. C., J. Appl. Phys. 78, 1191 (1995).Google Scholar
12. Molva, E., Pautrat, J. L., Saminadayar, K., Milchberg, G., and Magnea, N., Phys. Rev. B 30, 3344 (1984).Google Scholar