Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:35:20.908Z Has data issue: false hasContentIssue false

Pillared Clays and Micas

Published online by Cambridge University Press:  28 February 2011

Jack W. Johnson
Affiliation:
Corporate Research, Exxon Research and Engineering, Annandale, NJ 08801
John F. Brody
Affiliation:
Corporate Research, Exxon Research and Engineering, Annandale, NJ 08801
Get access

Abstract

The interest in the petroleum industry in converting heavier feeds to liquid fuels has led to a search for microporous materials with pore sizes larger than those found in the faujasitic zeolites which form the basis of many petroleum processing catalysts. Materials with zeolite-like pores in the 10 Å range can be synthesized by intercalating large polyoxocations between the layers of smectite clays. Subsequent calcination dehydrates the cations and converts them into oxide pillars that prop the clay layers apart, resulting in permanent microporosity in the interlayer region. Pillared clays have been studied extensively during the last decade due to their potential use in petroleum processing as cracking and hydrocracking catalysts. Previous workers have primarily utilized smectite clays such as montmorillonite and hectorite as the starting layered material for pillared clay. We now report that synthetic fluoromicas, clay-like materials of layer charge density higher than that of smectites, can also be pillared with polyoxoaluminum cations to form aluminapillared fluoromicas that are thermally stable up to 700°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brindley, G. W.; Brown, G., Eds.; “Crystal Structures of Clay Minerals and Their X-Ray Identification”; Mineralogical Society: London, 1980. Grim, R. E. “Clay Mineralogy”; McGraw-Hill: New York, 1968.Google Scholar
2. Smith, J. V.; Dytrych, W.J. Nature, 1984, 309, 607608.CrossRefGoogle Scholar
3. Barrer, R. M.; McCleod, D. M. Trans. Faraday Soc., 1955, 51, 1290. Barrer, R. M. “Zeolites and Clay Minerals as Adsorbents and Molecular Sieves”; Academic Press: New York, 1978, pp. 407–483.Google Scholar
4. Knudson, M. I.; McAtee, J. L. Clays and Clay Miner., 1973, 21, 19. Traynor, M. F.; Mortland, M. M.; Pinnavaia, T. J. Clays and Clay Miner., 1978, 26, 319. Loeppert, R. H.; Mortland, M. M.; Pinnavaia, T. J. Clays and Clay Miner., 1979, 27, 201.Google Scholar
5. Vaughan, D. E. W.; Lussier, R. J.; Magee, J. S. U. S. Patents #4,176,090, 1979; #4,248,739, 1981; #4,271,043, 1981.Google Scholar
6. (a) Brindley, G. W.; Samples, R. E. Clay Miner., 1977, 12, 229237. (b) Lahav, N.; Shani, U.; Shabtai, J. Clays and Clay Miner., 1978, 26, 107–115. (c) Lussier, R. J.; Magee, J. S.; Vaughan, D. E. W. Prepr., 7th Canad. Symp. Catal. Edmonton, Alberta 1980, pp. 88–95. (d) Occelli, M. L.; Tindwa, R. M. Clays and Clay Miner., 1983, 31, 22–28.CrossRefGoogle Scholar
7. Yamanaka, S.; Brindley, G. W. Clays and Clay Miner., 1979, 27, 119124. Bartley, G. J. J.; Burch, R. Appl. Catal., 1985, 19, 175–185. Burch, R.; Warburton, C. I. J. Catal., 1986, 97, 503–510.Google Scholar
8. Sterte, J. Clays and Clay Miner., 1986, 34, 658664. Yamanaka, S.; Nishihara, T.; Hattori, M. Mater. Chem. Phys., 1987, 17, 87–101.Google Scholar
9. Oades, J. M. Clays and Clay Miner., 1984, 32, 4957. Yamanaka, S.; Doi, T.; Sako, S.; Hattori, M. Mater. Res. Bull., 1984, 19, 161–168.CrossRefGoogle Scholar
10. Brindley, G. W.; Yamanaka, S. Amer. Miner., 1979, 64, 830835. Pinnavaia, T. J.; Tzou, M.-S.; Landau, S. D. J. Amer. Chem. Soc., 1985, 107, 4783–4785.Google Scholar
11. Lewis, R. M.; Ott, K. C.; Van Santen, R. A. U. S. Patent #4,510,257, 1985.Google Scholar
12. Ocelli, M. L. J. Mol. Catal., 1986, 35, 377389; Ocelli, M. L.; in Schultz, L. G.; van Olphen, H.; Mumpton, F. A., Eds.; “Proceedings of the International Clay Conference, Denver, 1985”; Clay Minerals Society: Bloomington, Indiana, 1987, pp. 319–323.Google Scholar
13. Bailey, S. W. Reviews in Mineralogy, 1984, 13, 112.Google Scholar
14. Eitel, W. Proc. Int. Symp. React. Solids, 1952, Gothenburg, Sweden, pp. 335347.Google Scholar
15. Shell, H. R. Bur. Mines Report 6076, 1963. Johnson, R. C.; Shell, H. R. Bur. Mines Report 6235, 1963.Google Scholar
16. Hatch, R. A. U. S. Patent #3,001,571, 1961 Google Scholar
17. Kitajima, K.; Daimon, N. Chem. Lett., 1972, 953956.Google Scholar
18. Kitajima, K.; Daimon, N. Chem. Lett., 1973, 241244. Kitajima, K.; Daimon, N.; Kondo, R. Nippon Kagaku Kaishi, 1976, 597–603.Google Scholar
19. Kitajima, K.; Daimon, N.; Kondo, R. Clay Minerals, 1978, 13, 167175.Google Scholar
20. Kondo, R.; Daimon, M.; Asaga, K.; Nishikawa, T.; Kitajima, K.; Daimon, N. J. Amer. Cer. Soc., 1980, 63, 4143.Google Scholar
21. Kitajima, K.; Koyama, F.; Takusagawa, N. Bull. Chem. Soc. Japan, 1985, 58, 13251326.CrossRefGoogle Scholar
22. Kitajima, K.; Daimon, N.Nippon Kagaku Kaishi, 1975, 991–995.Google Scholar
23. Toraya, H.; Iwai, S.; Marumo, F.; Hirao, M. Z. Kristallogr., 1977, 146, 7383.Google Scholar
24. Toraya, H.; Iwai, S.; Marumo, F.; Daimon, N.; Kondo, R. Z. Kristallogr., 1976, 144, 4252.Google Scholar
25. Toraya, H.; Iwai, S.; Marumo, F.; Hirao, M. Z. Kristallogr., 1978, 148, 6581.Google Scholar
26. Daimon, N.; Izawa, T. U. S. Patent #4,045,342, 1977. Daimon, N.; Kitajima, K. U. S. Patent #4,067,819, 1978. Daimon, N.; Izawa, T.; Imai, M. U. S. Patent #4,077,938, 1978.Google Scholar
27. Jackson, M. L. “Soil Chemical Analysis–An Advanced Course”; Published by the author: Madison, Wisconsin, 1979, pp. 256–257.Google Scholar
28. Tokarz, M.; Shabtai, J. Clays and Clay Miner., 1985, 33, 8998.Google Scholar
29. Pinnavaia, T. J.; Tzou, M.-T.; Landau, S. D.; Raythatha, R. H. J. Molec. Catal., 1984, 27, 195212.Google Scholar
30. Akitt, J. W.: Farthing, A. J. Chem. Soc. Dalton Trans., 1981, 16061628. Teagarden, D. L.; Kozlowski, J. F.; White, J. L.; Hem, S. L. J. Pharm. Sci., 1981, 70, 758–761. Schonherr, S.; Gorz, H.; Bertram, R.; Muller, D.; Gessner, G. Z. anorg. allg. Chem., 1983,502, 113–122. Bertram, R.; Gessner, W.; Muller, D.; Gorz, H.; Schonherr, S. Z. anorg. allg. Chem., 1985,525, 14–22. Bertram, R.; Gessner, W.; Muller, D. Z. Chem., 1986, 26, 340–342.Google Scholar
31. Pauling, L. Z. Kristallogr., 1933, 84, 442452. Johansson, G. Acta Chem. Scand, 1960, 14, 771–773; Ark. Kemi, 1962, 20, 321–342.Google Scholar
32. Diddams, P.; Thomas, J. M.; Jones, W.; Ballantine, J. A.; Purnell, J. H. J. Chem. Soc., Chem. Comm., 1984, 13401342. Plee, D.; Borg, F.; Gatineau, L.; Fripiat, J. J. J. Amer. Chem. Soc., 1985, 107, 2362–2369. Pinnavaia, T. J.; Landau, S. D.; Tzou, M.-T.; Johnson, I. D.; Lipsicas, M. J. Amer. Chem. Soc., 1985, 107, 7222–7224.Google Scholar
33. Harris, J. R. Prepr., Div. Petr. Chem. Amer. Chem. Soc., 1987, 32, 652657.Google Scholar
34. Johnson, J. W.; Brody, J. F., to be submitted, 1988Google Scholar
35. McDaniel, C. V.; Maher, P. K. in “Zeolite Chemistry and Catalysis”, Rabo, J. A., ed. ACS Monograph 171, 1976, pp.285331 Google Scholar
36. Kramer, G. M.; McVicker, G. B.; Ziemiak, J. J. J. Catal., 1985, 92, 355363 Google Scholar
37. McVicker, G. B.; Ziemiak, J. J.; Johnson, J. W.; Brody, J. F., unpublished results.Google Scholar
38. Robbins, J. R.; Johnson, J. W., unpublished results.Google Scholar