Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:46:33.778Z Has data issue: false hasContentIssue false

Piezoresponse Force Microscopy Studies of pc-BiFeO3 Thin Films Produced by the Simultaneous Laser Ablation of Bi and FeO3

Published online by Cambridge University Press:  07 January 2013

C. I. Enriquez-Flores
Affiliation:
CINVESTAV Unidad Querétaro, Lib. Norponiente 2000, Fracc. Real de Juriquilla, Querétaro, Qro., Mexico,
J. J. Gervacio-Arciniega
Affiliation:
CINVESTAV Unidad Querétaro, Lib. Norponiente 2000, Fracc. Real de Juriquilla, Querétaro, Qro., Mexico,
F. J. Flores-Ruiz
Affiliation:
CINVESTAV Unidad Querétaro, Lib. Norponiente 2000, Fracc. Real de Juriquilla, Querétaro, Qro., Mexico,
D. Cardona
Affiliation:
Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico D.F., CP 11801, Mexico.
E. Camps
Affiliation:
Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico D.F., CP 11801, Mexico.
J. Muñoz-Saldaña
Affiliation:
CINVESTAV Unidad Querétaro, Lib. Norponiente 2000, Fracc. Real de Juriquilla, Querétaro, Qro., Mexico,
F.J. Espinoza-Beltrán
Affiliation:
CINVESTAV Unidad Querétaro, Lib. Norponiente 2000, Fracc. Real de Juriquilla, Querétaro, Qro., Mexico,
Get access

Abstract

Bismuth iron oxide BFO films were produced by the pulsed laser deposition technique. These films are a mixture of BiFeO3 ferroelectrical and Bi25FeO40 piezoelectrical phases. The ferroelectrical domain structure of these films was studied via contact resonance piezoresponse force microscopy (CR-PFM) and resonance tracking PFM (RT-PFM). The proportions of area of these BFO phases were derived from the PFM images. The ferroelectrical domain size corresponds to the size of the BiFeO3 crystals. The CR-PFM and RT-PFM techniques allowed us to be able to distinguish between the ferroelectric domains and the piezoelectric regions existing in the polycrystalline films.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kumar, A., Yan, F., Zeng, K. and Lu, L., Functional Materials Letters 4, 91 (2011).10.1142/S179360471100166XCrossRefGoogle Scholar
Ahadi, K., Mahdavi, S. M., Nemati, A. and Kianinia, M., J Mater Sci: Mater Electron 22, 815 (2011).Google Scholar
Shelke, V., Mazumdar, D., Jesse, S., Kalinin, S., Baddorf, A. and Gupta, A., New Journal of Physics 14, 053040 (2012).10.1088/1367-2630/14/5/053040CrossRefGoogle Scholar
Moore, C. A., Yu, Z-Q, Thompson, L. R. and Collins, G. J., Laser and Electron Beam Assisted Processing, in Handbook of Thin-Film Deposition Processes and Techniques, edited by Seshan, Krishna. 2nd edition, (Noyes Publications / William Andrew Publishing, Norwich, NY, 2002), p. 349378.Google Scholar
Harnagea, C., Alexe, M., Hesse, D., and Pignolet, A., Appl. Phys. Lett. 83, 338 (2003).10.1063/1.1592307CrossRefGoogle Scholar
Lee, H., Park, J., Han, S. A., Lee, D., Kim, K.B., Lee, N.S., Park, J-Y, Seo, Y., Lee, S.W. and Choi, Y. J., Scripta Materialia 66, 101 (2012).10.1016/j.scriptamat.2011.10.013CrossRefGoogle Scholar
Gervacio Arciniega, J. J., Prokhorov, E., Espinoza Beltran, F. J. and Gonzalez-Hernandez, J., Appl. Phys. Lett. 97, 063504 (2010).10.1063/1.3478568CrossRefGoogle Scholar
Nath, R., Zhong, S., Alpay, S. P., Huey, B. D., and Cole, M. W., Appl. Phys. Lett. 92, 012916 (2008).10.1063/1.2825287CrossRefGoogle Scholar
Jungk, T., Hoffmann, A. and Soerge, E., Journal of Microscopy 227, 72 (2007).10.1111/j.1365-2818.2007.01783.xCrossRefGoogle Scholar
Rabe, U., Amelio, S., Kester, E., Scherer, V., Hirsekorn, S. and Arnold, W., Ultrasonics 38 430437 (2012).10.1016/S0041-624X(99)00207-3CrossRefGoogle Scholar
Kos, A.B. and Hurley, D.C., Meas. Sci. Technol. 19 015504 (2008).10.1088/0957-0233/19/1/015504CrossRefGoogle Scholar