Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T11:45:00.194Z Has data issue: false hasContentIssue false

Piezoelectric Measurements with Atomic Force Microscopy

Published online by Cambridge University Press:  10 February 2011

J. A. Christman
Affiliation:
Department of Physics and North Carolina State University, Raleigh, NC 27695
H. Maiwa
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
S.-H. Kim
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
A. I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
R. J. Nemanich
Affiliation:
Department of Physics and North Carolina State University, Raleigh, NC 27695
Get access

Abstract

An atomic force microscope (AFM) is used to measure the magnitude of the effective longitudinal piezoelectric constant (d33) of thin films. Measurements are performed with a conducting diamond AFM tip in contact with a top electrode which is driven by an externally applied voltage. The interaction between the tip and electric field present is a potentially large source of error that is eliminated through the use of this configuration and the conducting diamond tips. Measurements yielded reasonable piezoelectric constants of X-cut single crystal quartz, thin film ZnO, Pb(Zr,Ti)O3 (Zr/Ti = 30/70), and nonpiezoelectric amorphous SiO2 thin films. The system was also used to measure d33 hysteresis loops for Pb(Zrx,Ti1−x)O3 thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mason, W. P. and Jaffe, H., Proceedings of the IRE, 921 (1954).Google Scholar
2 Kholkin, A. L., Wuetchrich, C., Taylor, D. V., and Setter, N., Rev. Sci. Instrum. 67, 1935 (1996).Google Scholar
3 Birk, H., Glatz-Reichenbach, J., , Li-Jie, Schreck, E., and Dransfield, K., J. Vac. Sci. Technol. B 9, 1162 (1991).Google Scholar
4 , Lie-Jie, Baur, C., Koslowski, B., and Dransfield, K., Physica B 204, 318 (1995).Google Scholar
5 Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L. A., Hiskes, R., Dicarolis, S. A., and Amano, J., Appl. Phys. Lett. 68, 2358 (1996).Google Scholar
6 Zavala, G., Fendler, J. H., and Trolier-McKinstry, S., J. Appl. Phys. 81, 7480 (1997).Google Scholar
7 Guethner, P. and Dransfield, K., Appl. Phys. Lett. 61, 1137 (1992).Google Scholar
8 Gruverman, A., Auciello, O., and Tokumoto, H., J. Vac. Sci. Technol. B 14, 602 (1996).Google Scholar
9 Colla, E. L., Hong, S., Taylor, D. V., Tagantsev, A. K., Setter, N., and No, K., Appl. Phys. Lett. 72, 2763 (1998).Google Scholar
10 Franke, K., Besold, J., Haessler, W., and Seegebarth, C., Surf. Sci. Lett. 302, L283 (1993).Google Scholar
11 Niedermann, P., Haenni, W., Blanc, N., Christoph, R., and Burger, J., J. Vac. Sci. Technol. A 14, 1233 (1996).Google Scholar
12 O'Shea, S. J., Atta, R. M., and Welland, M. E., Rev. Sci. Instrum. 66, 2508 (1995).Google Scholar
13 Tanaka, K., Kubo, R., Ohwada, K., and Umeda, A., Jpn. J. Appl. Phys. 34, 5230 (1995).Google Scholar
14 Kim, S.-H., Hong, J. G., Gunter, J. C., Streiffer, S. K., and Kingon, A. I., Mater. Res. Soc. Symp. Proc. 493, 131 (1998).Google Scholar