Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T18:36:19.045Z Has data issue: false hasContentIssue false

Piezoelectric Field Effect on Optical Properties of GaN/GaInN/AlGaN Quantum Wells

Published online by Cambridge University Press:  15 February 2011

Jin Seo Im
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany, E-mail:, [email protected]
H. Kollmer
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany, E-mail:, [email protected]
O. Gfrörer
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany, E-mail:, [email protected]
J. Off
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany, E-mail:, [email protected]
F. Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany, E-mail:, [email protected]
A. Hangleiter
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany, E-mail:, [email protected]
Get access

Abstract

We designed and studied two sample groups: first, GaInN/AlGaN/GaN quantum wells with asymmetric barrier structure and secondly, GaInN/GaN quantum wells with asymmetrically doped barriers. Time-resolved measurements on the asymmetric structure reveal an enhanced oscillator strength when the AlGaN barrier is on top of the GaInN quantum well, indicating a better carrier confinement in such a structure. The photoluminescence emission energy of the GaInN/GaN quantum well with doped GaN barriers shifts towards higher energy than that of undoped samples due to screening, but only when the GaN barrier layer below the quantum well is doped. In contrast, the sample where only a GaN cap layer above the quantum well is doped, shows no blue-shift. These results, showing asymmetries in GaInN/GaN quantum wells, provide confirming evidence of the piezoelectric field effect and allow us to determine the sign of the piezoelectric field, which points towards the substrate in a compressively strained quantum well. Furthermore, we performed model calculations of the global band bending and the screening effect, which consistently explain our experimental findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Berlin, 1997).Google Scholar
2. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
3. Narukawa, Y., Kawakami, Y., Fujita, S., Fujita, S., and Nakamura, S., Phys. Rev. B 55, R1938 (1997).Google Scholar
4. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Fujita, S., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
5. Chichibu, S., Sota, T., Wada, K., and Nakamura, S., J. Vac. Sci. Technol. B 16, 2204 (1998).Google Scholar
6. Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L382 (1997).Google Scholar
7. Im, J. S., Kollmer, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998).Google Scholar
8. Hangleiter, A., Im, J. S., Kollmer, H., Heppel, S., Off, J., and Scholz, F., MRS Internet J. Nitride Semicond. Res. 3, 15 (1998).Google Scholar
9. Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., and Akasaki, I., Appl. Phys. Lett. 73, 1691 (1998).Google Scholar
10. Scholz, F., Off, J., Kniest, A., Görgens, L., and Ambacher, O., to be published in Mat. Sci. Eng. B.Google Scholar
11. Heppel, I.S., Off, J., Scholz, F., and Hangleiter, A., to be published.Google Scholar