Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:47:41.236Z Has data issue: false hasContentIssue false

Piezoelectric 2D materials for bistable NEMS energy harvesters

Published online by Cambridge University Press:  22 May 2014

Miquel López-Suárez
Affiliation:
Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Miguel Pruneda
Affiliation:
ICN2 - Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra Barcelona, Spain Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
Riccardo Rurali
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
Gabriel Abadal
Affiliation:
Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Get access

Abstract

The dynamics of one atom thick h-BN suspended nanoribbons have been obtained by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine type equation to explore their use as energy harvesting devices. Similarly to our previous proposal for a graphene-based harvester1, an applied compressive strain is used to drive the clamped-clamped nanoribbon structure into a bistable regime, where quasi-harmonic vibrations are combined with low frequency swings between the minima of a double-well potential. h-BN, graphene and MoS2 similar structures have been compared in terms of the static response to a compressive strain and of the dynamic evolution induced by an external noisy vibration. Due to its intrinsic piezoelectric response, the mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced non-linearity, the proposed device is predicted to harvest an electrical root mean square (rms) power of more than 180 fW when it is excited by a noisy external force characterized by a white Gaussian frequency distribution with an intensity in the order of Frms=5pN.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

López-Suárez, M., Rurali, R., Gammaitoni, L. and Abadal, G., Phys. Rev. B 84(16) 161401 (2011).10.1103/PhysRevB.84.161401CrossRefGoogle Scholar
ICT-Energy - Nanoscale Energy Management Concepts Towards Zero-Power Information and Communication Technology. Edited by Fagas, Giorgos, Gammaitoni, Luca, Paul, Douglas and Berini, Gabriel Abadal, Intech Open Science (2013). ISBN: 980-953-307-1005-8.Google Scholar
Roodenburg, D., Spronck, J.W., van der Zant, H.S.J. and Venstra, W.J.. Appl. Phys. Lett. 94 (2009) 183501.10.1063/1.3129195CrossRefGoogle Scholar
Venstra, W.J., Westra, H.J.R. and van der Zant, H.S.J., Appl. Phys. Lett. 97, 193107 (2010).CrossRefGoogle Scholar
Westra, H.J.R., Poot, M., van der Zant, H.S.J. and Venstra, W.J., Phys. Rev. Lett. 105 117205 (2010).CrossRefGoogle Scholar
Cottone, F., Vocca, H., and Gammaitoni, L., Phys. Rev. Lett. 102, 080601 (2009).CrossRefGoogle Scholar
Halvorsen, E., Phys. Rev. E, 87(4) 042129 (2013).CrossRefGoogle Scholar
Khovanova, N. A. and Khovanov, I. A., Appl. Phys. Lett. 99 144101, 3 pp (2011).CrossRefGoogle Scholar
López-Suárez, M., Agustí, J., Torres, F., Rurali, R., and Abadal, G., Appl. Phys. Lett. 102, 153901 (2013).10.1063/1.4800926CrossRefGoogle Scholar
Venstra, W.J., Westra, H.J.R. and van der Zant, H.S.J., Nat. Commun. 4 2624 (2013).CrossRefGoogle Scholar
Chandratre, S., and Sharma, P., Appl. Phys. Lett., 100(2), 023114–023114 (2012).10.1063/1.3676084CrossRefGoogle Scholar
Ong, M. T. and Reed, E. J., ACS Nano, 6(2), 13871394. (2012).10.1021/nn204198gCrossRefGoogle Scholar
, K. Duerloo, A. N., Ong, M. T. and Reed, E. J., J. Phys. Chem. Lett. 3 28712876 (2012).CrossRefGoogle Scholar
Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D., Journal of Physics: Condensed Matter, 14, 2745 (2002).Google Scholar
López-Suárez, M., Pruneda, M., Abadal, G., Rurali, R.. “Piezoelectric layered materials for energy harvesting”. Nanotechnology, in press (2014).Google Scholar