Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:30:59.170Z Has data issue: false hasContentIssue false

Physicochemical and Microstructural Characterization of Rf Sputtering Magnetron Pb(ZrTi)O3 Thin Films

Published online by Cambridge University Press:  21 February 2011

F. Varniere
Affiliation:
Institut Universitaire de Technologie, Université de Paris Sud (XI), Plateau du Moulon, BP127, 91403 ORSAY CEDEX, FRANCE
E. Caytan
Affiliation:
Institut Universitaire de Technologie, Université de Paris Sud (XI), Plateau du Moulon, BP127, 91403 ORSAY CEDEX, FRANCE
B. Eakim
Affiliation:
Institut Universitaire de Technologie, Université de Paris Sud (XI), Plateau du Moulon, BP127, 91403 ORSAY CEDEX, FRANCE
H. Achard
Affiliation:
LETI Département de Microélectronique 85 X, 38041 GRENOBLE CEDEX, France
B. Agius
Affiliation:
Institut Universitaire de Technologie, Université de Paris Sud (XI), Plateau du Moulon, BP127, 91403 ORSAY CEDEX, FRANCE
Get access

Abstract

Lead zirconate titanate thin films were deposited on Pt/TiN/BPSG/Si structures by sputtering an oxide target of nominal composition (Pb(Zr0.55,Ti0.45)O3 or PZT) in argon plasma. The PZT films were deposited at different pressures and different substrate temperatures ranging from floating temperature to 400°; the thicknesses of the sputtered films were in the 15-720 nm range. The absolute and relative cation and oxygen compositions of the thin films were determined by a new method based on the simultaneous use of Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA) induced by a deuteron beam. The total deposition rate and atomic ones are observed as a function of the substrate temperature and pressure. Therefore the dependence of fil composition on pressure and substrate temperature is discussed.

Post-deposition annealing studies and ferroelectric properties are presented. The values of the remanent polarization, Pr, were in the range 5-7 µC/cm2, the coercitive field, Ec, between 15 and 25 kV/cm and the dielectric constant, µr, evaluated from capacitance measurements around 1200, depending on the process parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1- Yi, G., Wo, Z., and Sayer, M., J. Appl. Phys., 64 (5), 27171 (1988).Google Scholar
2- Krupanidhi, S.B., Maffei, N., Sayer, M., and EI-Assal, K., J. Appl. Phys., 54, 6601, (1983).Google Scholar
3- Ameen, M.S., Graettinger, T.M., Rou, S.H., AI-Shareef, H.N., Gifford, K.D., Auciello, O., and Kingon, A.I., Mat. Res. Soc. Symp. Proc., 200, 65, (1990).Google Scholar
4- Cattan, E., Agius, B., Achard, H., Joly, J.P., Ferroelectrics, 128, 25, (1992).Google Scholar
5- Sreenivas, K., Sayer, M., J. Appl. Phys., 64 (3), 1484, (1988).Google Scholar
6- Wong, J.C. Cheang, Li, Jian, Ortega, C., Siejka, J., Vizkelethy, G. and Lemalitre, Y., Nucl. Instr. and Meth. in Physics Research B (1991).Google Scholar
7- Cattan, E., Agius, B., Achard, H., Joly, J.P., Wong, J.C. Cheang, Ortega, C., J. Siejka, Mat. Res. Soc. Symp. Proc, 243, 173, (1992).Google Scholar