Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:14:56.349Z Has data issue: false hasContentIssue false

A Physically Based Modeling of Boron TED in Amorphised Si

Published online by Cambridge University Press:  17 March 2011

Evelyne Lampin
Affiliation:
IEMN - Dpt. ISEN B.P.69, 59652 Villeneuve d'Ascq Cedex, France
Vincent Senez
Affiliation:
IEMN - Dpt. ISEN B.P.69, 59652 Villeneuve d'Ascq Cedex, France
Alain Claveriel
Affiliation:
CEMES - CNRS BP 4347, 31055 Toulouse Cedex, France
Get access

Abstract

We have developed a physically based modeling of TED of implanted boron in amorphised Si. The simulation starts with a supersaturation of Si free interstitials located below the amorphous/crystalline interface which, upon annealing, tend to diffuse out or to precipitate in the form of extended defects (clusters, {113}s, dislocation loops). The modeling of the nucleation and growth of these defects is divided into three distinct stages: the nucleation, the “pure growth” and the Ostwald ripening. This system can interact with a surface (characterized by a given recombination velocity for Si interstitials) only after the SPE regrowth is completed. Implementation of this model into a process simulator allows to describe the isothermal and isochronal evolutions of the sizes and of the densities of dislocation loops in agreement with TEM observations. Assuming that boron diffusion is caused by the concomitant time and space variations of the free interstitial supersaturation in the wafer, TED can be accurately predicted for a variety of experimental conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J., Poate, J. M., Appl. Phys. Lett. 65, 2305 (1994).10.1063/1.112725Google Scholar
2. Jones, K. S., Zhang, L. H., Krishnamoorthy, V., Law, M., Simons, D. S., Chi, P., Rubin, L., Elliman, R. G., Appl. Phys. Lett. 68, 2672 (1996).10.1063/1.116277Google Scholar
3. Claverie, A., Laânab, L., Bonafos, C., Bergaud, C., Martinez, A., Mathiot, D., Nucl. Instr. and Meth. in Phys. Res. B 96, 202 (1995).10.1016/0168-583X(94)00483-8Google Scholar
4. Baccus, B., Vandenbossche, E., Defect Diffus. Forum 115/116, 55 (1994).10.4028/www.scientific.net/DDF.115-116.53Google Scholar
5. Russel, K. C., Adv. Colloid Interface Sci. 13, 205 (1980).10.1016/0001-8686(80)80003-0Google Scholar
6. Bonafos, C., Mathiot, D., Claverie, A., J. Appl. Phys. 83, 3008 (1998).10.1063/1.367056Google Scholar
7. Lampin, E., Senez, V., Claverie, A., J. Appl. Phys. 85, 8137 (1999).10.1063/1.370652Google Scholar
8. Cowern, N. E. B., Mannino, G., Stolk, P. A., Roozeboom, F., Huizing, H. G. A., Berkum, J. G. M.van, Cristiano, F., Claverie, A., Jaraíz, M., Phys. Rev. Lett. 82, 4460 (1999).10.1103/PhysRevLett.82.4460Google Scholar
9. Kim, J., Kirchhoff, F., Wilkins, J. W., Khan, F. S., Phys. Rev. Lett. 84, 503 (2000).10.1103/PhysRevLett.84.503Google Scholar
10.Claverie, A., Bonafos, C., Omri, M., Mauduit, B. de, Assayag, G. Ben, Martinez, A., Alquier, D., Mathiot, D., Mater. Res. Soc. Symp. Proc. 438, 3 (1997).10.1557/PROC-438-3Google Scholar
11.Olson, G. L., Roth, J. A., Mater. Sci. Rep. 3, 1 (1988).10.1016/S0920-2307(88)80005-7Google Scholar
12.Alquier, D., Cowern, N. E. B., Pichler, P., Armand, C., Martinez, A., Mathiot, D., Omri, M., Claverie, A., Mater. Res. Soc. Symp. Proc. 532, 67 (1998).10.1557/PROC-532-67Google Scholar
13.Cowern, N. E. B., Alquier, D., Omri, M., Claverie, A., Nejim, A., Nucl. Instr. and Meth. in Phys. Res. B 148, 257 (1999).10.1016/S0168-583X(98)00678-8Google Scholar