No CrossRef data available.
Article contents
A Physically Based Modeling of Boron TED in Amorphised Si
Published online by Cambridge University Press: 17 March 2011
Abstract
We have developed a physically based modeling of TED of implanted boron in amorphised Si. The simulation starts with a supersaturation of Si free interstitials located below the amorphous/crystalline interface which, upon annealing, tend to diffuse out or to precipitate in the form of extended defects (clusters, {113}s, dislocation loops). The modeling of the nucleation and growth of these defects is divided into three distinct stages: the nucleation, the “pure growth” and the Ostwald ripening. This system can interact with a surface (characterized by a given recombination velocity for Si interstitials) only after the SPE regrowth is completed. Implementation of this model into a process simulator allows to describe the isothermal and isochronal evolutions of the sizes and of the densities of dislocation loops in agreement with TEM observations. Assuming that boron diffusion is caused by the concomitant time and space variations of the free interstitial supersaturation in the wafer, TED can be accurately predicted for a variety of experimental conditions.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000