Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:34:56.323Z Has data issue: false hasContentIssue false

Physical Mechanisms Affecting the Reliability of GaN-based High Electron Mobility Transistors

Published online by Cambridge University Press:  18 May 2015

R. D. Schrimpf
Affiliation:
Vanderbilt University, Nashville, TN, 37212, United States.
D. M. Fleetwood
Affiliation:
Vanderbilt University, Nashville, TN, 37212, United States.
S. T. Pantelides
Affiliation:
Vanderbilt University, Nashville, TN, 37212, United States.
Y.S. Puzyrev
Affiliation:
Vanderbilt University, Nashville, TN, 37212, United States.
S. Mukherjee
Affiliation:
Vanderbilt University, Nashville, TN, 37212, United States.
R. A. Reed
Affiliation:
Vanderbilt University, Nashville, TN, 37212, United States.
J. S. Speck
Affiliation:
University of California Santa Barbara, Santa Barbara, CA, 93106, United States.
U. K. Mishra
Affiliation:
University of California Santa Barbara, Santa Barbara, CA, 93106, United States.
Get access

Abstract

The physical mechanisms responsible for electrically-induced parametric degradation in GaN-based high electron mobility transistors are examined using a combination of experiments, device simulation, and first-principles defect analysis. A relatively simple formulation is developed under the assumption that the hot-electron scattering cross-section is independent of the electron energy. In this case, one can relate the change in defect concentration to the operational characteristics of a device, such as the spatial and energy distribution of electrons (electron temperature), electric field distribution, and electron energy loss to the lattice.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chowdhury, S. and Mishra, U. K., “Lateral and vertical transistors using the AlGaN/GaN heterostructure,” IEEE Trans. Electron Devices, vol. 60, pp. 30603066, 2013.CrossRefGoogle Scholar
Zomorrodian, V., Mishra, U. K., and York, R. A., “A high-efficiency class F MMIC power amplifier at 4.0 GHz using AlGaN/GaN HEMT technology,” in IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012, pp. 14.Google Scholar
Marcon, D., Kauerauf, T., Medjdoub, F., Das, J., Van Hove, M., Srivastava, P., Cheng, K., Leys, M., Mertens, R., Decoutere, S., Meneghesso, G., Zanoni, E., and Borghs, G., “A comprehensive reliability investigation of the voltage-, temperature- and device geometry-dependence of the gate degradation on state-of-the-art GaN-on-Si HEMTs,” in IEEE Electron Devices Meeting, 2010, pp. 20.3.1-20.3.4.Google Scholar
Zanoni, E., Meneghesso, G., Verzellesi, G., Danesin, F., Meneghini, M., Rampazzo, F., Tazzoli, A., and Zanon, F., “A review of failure modes and mechanisms of GaN-based HEMTs,” in IEEE International Electron Devices Meeting, 2007, pp. 381384.Google Scholar
Meneghini, M., de Santi, C., Ueda, T., Tanaka, T., Ueda, D., Zanoni, E., and Meneghesso, G., “Time- and field-dependent trapping in GaN-based enhancement-mode transistors with p-gate,” IEEE Electron Device Letters, vol. 33, pp. 375377, 2012.CrossRefGoogle Scholar
Chini, A., Esposto, M., Meneghesso, G., and Zanoni, E., “Evaluation of GaN HEMT degradation by means of pulsed I-V, leakage and DLTS measurements,” Electronics Letters, vol. 45, pp. 426427, 2009.CrossRefGoogle Scholar
Sasikumar, A., Arehart, A. R., Kaun, S. W., Chen, J., Zhang, E. X., Fleetwood, D. M., Schrimpf, R. D., Speck, J. S., and Ringel, S. A., “Defects in GaN based transistors,” in Proc. SPIE 8986, 2014, pp. 8986C-1: 9.Google Scholar
Meneghesso, G., Paccagnella, A., Gasparetto, G., Camin, D. V., Fedyakin, N., Pessina, G., and Canali, C., “Neutron induced damage in GaAs MESFETs,” in IEEE Nuclear Science Symposium Conference Record, 1996, pp. 256260.Google Scholar
Cai, S. J., Tang, Y. S., Li, R., Wei, Y. Y., Wong, L., Chen, Y. L., Wang, K. L., Chen, M., Zhao, Y. F., Schrimpf, R. D., Keay, J. C., and Galloway, K. F., “Annealing behavior of a proton irradiated AlxGa1-xN/GaN high electron mobility transistor grown by MBE,” IEEE Trans. Electron Devices, vol. 47, pp. 304307, 2000.CrossRefGoogle Scholar
Chen, J., Puzyrev, Y. S., Zhang, C. X., Zhang, E. X., McCurdy, M. W., Fleetwood, D. M., Schrimpf, R. D., Pantelides, S. T., Kaun, S. W., Kyle, E. C. H., and Speck, J. S., “Proton-induced dehydrogenation of defects in AlGaN/GaN HEMTs,” IEEE Trans. Nucl. Sci., vol. 60, pp. 40804086, 2013.CrossRefGoogle Scholar
Hu, X., Choi, B. K., Barnaby, H. J., Fleetwood, D. M., Schrimpf, R. D., Lee, S. C., Shojah-Ardalan, S., Wilkins, R., Mishra, U. K., and Dettmer, R. W., “The energy dependence of proton-induced degradation in AlGaN/GaN high electron mobility transistors,” IEEE Trans. Nucl. Sci., vol. 51, pp. 293297, 2004.CrossRefGoogle Scholar
Kalavagunta, A., Silvestri, M., Beck, M. J., Dixit, S. K., Schrimpf, R. D., Reed, R. A., Fleetwood, D. M., Shen, L., and Mishra, U. K., “Impact of proton irradiation-induced bulk defects on gate-lag in GaN HEMTs,” IEEE Trans. Nucl. Sci., vol. 56, pp. 31923195, 2009.CrossRefGoogle Scholar
Karmarkar, A. P., Jun, B. G., Fleetwood, D. M., Schrimpf, R. D., Weller, R. A., White, B. D., Brillson, L. J., and Mishra, U. K., “Proton irradiation effects on GaN-based high electron-mobility transistors with Si-doped AlxGa1-xN and thick GaN cap layers,” IEEE Trans. Nucl. Sci., vol. 51, pp. 38013806, Dec. 2004.CrossRefGoogle Scholar
Puzyrev, Y., Mukherjee, S., Jin, C., Roy, T., Silvestri, M., Schrimpf, R. D., Fleetwood, D. M., Singh, J., Hinckley, J. M., Paccagnella, A., and Pantelides, S. T., “Gate bias dependence of defect-mediated hot-carrier degradation in GaN HEMTs,” IEEE Trans. Electron Devices, vol. 61, pp. 13161320, 2014.CrossRefGoogle Scholar
Puzyrev, Y. S., Roy, T., Beck, M., Tuttle, B. R., Schrimpf, R. D., Fleetwood, D. M., and Pantelides, S. T., “Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors,” Journal of Applied Physics, vol. 109, article number 034501, 2011.CrossRefGoogle Scholar
Puzyrev, Y. S., Tuttle, B. R., Schrimpf, R. D., Fleetwood, D. M., and Pantelides, S. T., “Theory of hot-carrier-induced phenomena in GaN high-electron-mobility transistors,” Applied Physics Letters, vol. 96, article number 053505, 2010.CrossRefGoogle Scholar
Roy, T., Puzyrev, Y. S., Tuttle, B. R., Fleetwood, D. M., Schrimpf, R. D., Brown, D. F., Mishra, U. K., and Pantelides, S. T., “Electrical-stress-induced degradation in AlGaN/GaN high electron mobility transistors grown under gallium-rich, nitrogen-rich, and ammonia-rich conditions,” Applied Physics Letters, vol. 96, article number 133503, 2010.CrossRefGoogle Scholar
Kalavagunta, A., Touboul, A., Shen, L., Schrimpf, R. D., Reed, R. A., Fleetwood, D. M., Jain, R. K., and Mishra, U. K., “Electrostatic mechanisms responsible for device degradation in proton irradiated AlGaN/AlN/GaN HEMTs,” IEEE Trans. Nucl. Sci., vol. 55, pp. 21062112, Aug 2008.CrossRefGoogle Scholar
Kalavagunta, A., Mukherjee, S., Reed, R., and Schrimpf, R. D., “Comparison between trap and self-heating induced mobility degradation in AlGaN/GaN HEMTs,” Microelectronics Reliability, vol. 54, pp. 570574, Mar 2014.CrossRefGoogle Scholar