Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:25:44.575Z Has data issue: false hasContentIssue false

Physical AMD Electrical Properties of Iridium Thin Films

Published online by Cambridge University Press:  25 February 2011

R. G. Elliman
Affiliation:
Electronic Materials Engineering Department, Australian National University, Canberra, Australia
M. A. Lawn
Affiliation:
Microelectronic and Materials Technology Centre, R.M.I.T., Melbourne, Australia.
G. K. Reeves
Affiliation:
Microelectronic and Materials Technology Centre, R.M.I.T., Melbourne, Australia.
C. Jagadish
Affiliation:
Electronic Materials Engineering Department, Australian National University, Canberra, Australia
Get access

Abstract

Thin Ir films were deposited onto clean (111) Si surfaces. The films were analysed by Rutherford backscattering and transmission electron microscopy and were shown to be continuous for film thicknesses as small as 0.5nm. The films contained internal stress as deposited and coiled up when the substrate was removed chemically.

A four point probe was employed to measure the resistivity of the films as a function of film thickness. The resistivity increased with decreasing film thickness, from ∼35 micro-Ohm. cm for 160nm thick films to -190 micro-Ohm. cm for 0.5nm thick films. This increase in resistivity is shown to be consistent with theories of carrier transport in thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Murarka, S. P., “Suicides for VLSI Applications”, Academic Press, New York, (1983).Google Scholar
[2] Chen, L. J. and Tu, K. N., Mat. Sci. Rep., 6, 53 (1991)CrossRefGoogle Scholar
[3] Ondomari, I., Tu, K. N., d'Heurle, F. M., Kuan, T. S. and Petersson, , Appl. Phys. Lett., 33, 1028 (1978).Google Scholar
[4] Ohdomari, I., Kuan, T. S. and Tu, K. N., J. Appl. Phys. 50, 7020 (1979).Google Scholar
[5] Petersson, S., Baglin, J., Hammer, W., d'Heurle, F., Kuan, T. S. and Ohdomari, I.. J. Appl. Phys., 50, 3357 (1979).Google Scholar
[6] Wittmer, M., Oelhafen, P. and Tu, K. N., Phys. Rev., B33, 5391 (1986).Google Scholar
[7] Tsaur, B., Weeks, M. M. and Pellegrini, P. W., IEEE Elec. Dev. Lett., 9, 650 (1988).CrossRefGoogle Scholar
[8] Lawn, M. A., Elliman, R. G., Ridgway, M. C., Leckey, R. and Riley, J. D., Mat. Res. Soc. Symp. Proc., 202, 25 (1991).Google Scholar
[9] Schwartzentruber, B. S., Mo, Y. W., Webb, M. B. and Lagally, M. G., J. Vac. Sci., A7, 2901 (1989).Google Scholar
[10] Reeves, G. K. and Harrison, H. B., IEEE Trans. on Electr. Dev., ED–33, 328 (1986).Google Scholar
[11]Handbook of Thin Film technology”, ed. Maissel, L. I. and Glang, R., McGraw-Hill Book Co., New York, (1968).Google Scholar
[12] Tosser, A. J., Tellier, C. R. and Pichard, C. R., J. Mat. Sci., 16, 944 (1988).CrossRefGoogle Scholar
[13] Lucas, M. S. P., J. Appl. Phys., 36, 1632 (1965).Google Scholar
[14] See Chap. VI in “Thin Film PhenomenaChopra, K. L., McGraw-Hill Book Company, New York (1969).Google Scholar
[15] Soffer, S. B., J. Appl. Phys., 36, 3947 (1965).Google Scholar
[16] Cambell, L. L., “Galvanomagnetic and Thermomagnetic Effects”, Longmans, Green and Co., New York (1923).Google Scholar