Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:22:04.015Z Has data issue: false hasContentIssue false

Photostimulable Fluorescent Nanoparticles for Biological Imaging

Published online by Cambridge University Press:  23 June 2011

Andres Osvet
Affiliation:
Chair Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
Moritz Milde
Affiliation:
Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany
Sofia Dembski
Affiliation:
Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany
Sabine Rupp
Affiliation:
Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany
Carsten Gellermann
Affiliation:
Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany
Miroslaw Batentschuk
Affiliation:
Chair Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
Christoph J. Brabec
Affiliation:
Chair Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
Albrecht Winnacker
Affiliation:
Chair Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
Get access

Abstract

Spherical monodisperse core/shell-type nanoparticles, comprising an amorphous SiO2 core coated with a luminescent phosphor layer were synthesized by the modified Pechini processes. The sol-gel method allows covering the 50 – 500 nm core particles with different inorganic phosphor layers of about 10 nm thickness, doped with rare-earth or transition metal ions which determine the luminescent properties. Particles comprising a Zn2SiO4 shell, doped with Mn2+ ions, are not only fluorescent under UV irradiation (260 nm), but store the activation energy by trapping electrons/holes at lattice defects. This energy is released as phosphorescence in the time scale of seconds and minutes, or as photostimulated luminescence under the excitation of red light (650 nm). Traps related to these processes are different, and their concentration is affected by the preparation conditions of the particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ziegler, J., Xu, S., Kucur, E., Meister, F., Batentschuk, M., Gindele, F., Nann, Th., Adv. Mater. 20, 4068 (2008).Google Scholar
2. Mader, H. S., Wolfbeis, O. S., Anal. Chem. 82 (12), 5002 (2010).Google Scholar
3. Bannai, H., Levi, S., Schweizer, C., Dahan, M. and Triller, A.. Nature Protocols. 1, 2628 (2006).Google Scholar
4. Park, Y. I., Kim, J. H., Lee, K. T., Jeon, K.-S., Na, H. B., Yu, J. H., Kim, H. M., Lee, N., Choi, S. H., Baik, S.-I., Kim, H., Park, S. P., Park, B.-J., Kim, Y. W., Lee, S. H., Yoon, S.-Y., Song, I. C., Moon, W. K., Suh, Y. D., Hyeon, T., Adv. Mater. 21, 4414 (2009).Google Scholar
5. le Masne, Q.,.Chanéac, C.,.Seguin, J.,.Pellé, F.,.Maítrejean, S.,.Jolivet, J-P.,.Gourier, D.,.Bessodes, M.. PNAS 104, 9266 (2007).Google Scholar
6. Avouris, Ph., Chang, I. F., Dove, D., Morgan, T. N., Thefaine, Y., J. Electronic Mat. 10, 887 (1981).Google Scholar
7. Selomulya, R., Ski, S., Pita, K., Kam, C. H., Zhang, Q. Y., Buddhudu, S., Mater. Sci. Eng. B100, 136 (2003).Google Scholar
8. Chen, R.,.Wang, Y., Hu, Y., Hu, Z., Liu, C., Lumin, J.. 128, 1180 (2008).Google Scholar
9. Stoeber, W., Fink, A. and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
10. Dembski, S., Rupp, S., Gellermann, C., Batentschuk, M., Osvet, A., Winnacker, A., J. Colloid Interface Sci. 286, 32 (2011).Google Scholar
11. Thioulouse, P., Chang, I. F., Giess, E. A.. J. Electrochem. Soc. 130, 2065 (1983).Google Scholar
12. Brunold, T. C., Güdel, H. U., Cavalli, E., Chem. Phys. Lett. 252 112 (1996).Google Scholar
13. Barthou, C., Benoit, J., Benalloul, P., Morell, A., J. Electrochem. Soc. 141, 524 (1994).Google Scholar
14. Avouris, P., Morgan, T. N., J. Chem. Phys. 75, 4347 (1981).Google Scholar