Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T19:51:43.707Z Has data issue: false hasContentIssue false

Photoreflectance Characterization of InGaAs Lattice Matched to InP

Published online by Cambridge University Press:  22 February 2011

V. Bellani
Affiliation:
Università di Pavia, Dipartimento di Fisica “A. Volta”, Via Bassi 6, I-27100 Pavia, Italy
M. Amiotti
Affiliation:
Università di Pavia, Dipartimento di Fisica “A. Volta”, Via Bassi 6, I-27100 Pavia, Italy
M. Geddo
Affiliation:
Università di Pavia, Dipartimento di Fisica “A. Volta”, Via Bassi 6, I-27100 Pavia, Italy
G. Guizzetti
Affiliation:
Università di Pavia, Dipartimento di Fisica “A. Volta”, Via Bassi 6, I-27100 Pavia, Italy
G. Landgren
Affiliation:
Royal Institute of Technology, Semiconductor Laboratory, Electrum 229, S-16440 Kista, Sweden
Get access

Abstract

We measured photoreflectance (PR) spectra at different temperatures between 80 and 300 K, and optical absorption (OA) at 3 K on MOVPE grown Inl-xGaxAs nearly lattice-matched to InP. x-ray diffraction measurements gave a lattice mismatch δa/ao = -0.9.10−3 between ternary alloy and InP, corresponding to × = 0.485. We obtained the energy gap dependence on T from PR spectra. The blue shift of the gap was accounted for in terms of compositional difference with respect to the perfectly lattice matched alloy (× = 0.472), and elastic strain; moreover PR and OA showed evidence of the valence bands splitting at k = 0 due to interfacial strain, in fine agreement with theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Asai, H. and Oe, K., J. Appl. Phys. 54, 2052 (1983).CrossRefGoogle Scholar
2 Zielinski, E., Schweizer, H., Streubel, K., Eisele, H. and Weimann, G., J. Appl. Phys. 59, 2196 (1986)CrossRefGoogle Scholar
3 Aspnes, D.E. and Studna, A.A., Phys. Rev. Lett. 7, 4605 (1973).Google Scholar
4 Dimoulas, A., Tzanetakis, P., Hatzopoulos, Z., Georgakilas, A., Glembocki, O.J. and Cristou, A. in The Physics of Semiconductors, ed. by Anastassakis, E.M. and Joannopoulos, J.D. (World Scientific, Singapore, 1990) pp.10691073.Google Scholar
5 Estrera, J.P., Duncan, W.M., Kao, Y.C., Liu, H.Y. and Beam, A., J. Electr. Mat. 20, 983 (1991).CrossRefGoogle Scholar
6 Sydor, M., Angelo, J., Wilson, J.J., Mitchel, W.C. and Yen, M.Y., Phys. Rev. B 40, 8473(1989).Google Scholar
7 Varshni, Y.P., Physica 34, 149 (1967).Google Scholar
8 Gaskill, D.K., Bottka, N., Aina, L. and Mattingly, M., Appl. Phys. Lett. 56, 1269 (1990).CrossRefGoogle Scholar
9 Kuo, C.P., Vong, S.K., Kohen, R.M. and Stringfellow, G.B., J. Appl. Phys. 57, 5428(1985).CrossRefGoogle Scholar
10 Adachi, S., J. Appl. Phys. 53, 8775 (1982).Google Scholar
11 Pollack, F.H. and Cardona, M., Phys. Rev. 172, 816 (1986).Google Scholar
12 Feng, Z.C., Allermann, A.A., Barnes, P.A. and Perkowitz, S., Appl. Phys. Lett. 60, 1848(1992).Google Scholar