Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:32:30.867Z Has data issue: false hasContentIssue false

Photoreflectance Characterization of Etch-Induced Damage in Dry Etched GaAs

Published online by Cambridge University Press:  22 February 2011

O.J. Glembocki
Affiliation:
Naval Research Laboratory, Code 6864, Washington, DC 20375
J.A. Tuchman
Affiliation:
Naval Research Laboratory, Code 6864, Washington, DC 20375
K.K. Ko
Affiliation:
The University of Michigan, Electrical Engineering Department, Ann Arbor, MI 48109
S.W. Pang
Affiliation:
The University of Michigan, Electrical Engineering Department, Ann Arbor, MI 48109
A. Giordana
Affiliation:
Naval Research Laboratory, Code 6864, Washington, DC 20375
C.E. Stutz
Affiliation:
Wright Patterson Laboratories, Dayton, OH
Get access

Abstract

Photoreflectance has been used to characterize the etch-induced damage in GaAs processed in an Ar/Cl2 plasma generated by an electron-cyclotron resonance (ECR) source. We show that the damage is localized to the surface and that it is most influenced by the RF power, with little effect from the microwave power. The Fermi-level is observed to be unchanged in n-GaAs and remains near midgap, while for p-GaAs, the Fermi level shifts from near the valence band to midgap. Etch-induced anisite defects are proposed as a possible source of the damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hoof, C. Van, Deneffe, K., Boeck, J. De, Amet, D.J. and Borghs, G., Appl. Phys. Lett. 54, 608 (1989).CrossRefGoogle Scholar
2. Yin, X., Chen, H.M., Pollak, F.H., Cao, Y., Montano, P.A., Kirchner, P.D., Pettit, G.D. and Woodall, J.M., J. Vac. Sci. Technol. B9, 2114(1991)CrossRefGoogle Scholar
3. Yin, X., Chen, H.M., Pollak, F.H., Cao, Y., Montano, P.A., Kirchner, P.D., Pettit, G.D. and Woodall, J.M., J. Vac. Sci. Technol. B10, 131(1991)Google Scholar
4. Glembocki, O.J., Dagata, J.A., Dobisz, E.E. and Katzer, D.S., Proc. Mat. Res. Soc. 236, 217 (1992).CrossRefGoogle Scholar
5. Glembocki, O.J., Proc. Soc. Photo-Optical Instrumentation Engineers, 1286, 1(1990) and references therein.Google Scholar
6. Aspnes, D.E., Phys. Rev. 153, 972(1967) and R.N. Bhattacharya, H. Shen, P. Parayanthal, F.H. Pollak, T. Coutts and H. Aharoni, Phys. Rev B37, 4044(1988).CrossRefGoogle Scholar
7. Troost, D., Koenders, L., Fan, L.-Y. and Monch, W., J. Vac. Sci. Technol. B5, 1119(1987)CrossRefGoogle Scholar
8. Stiles, K., Mao, D. and Kahn, A., J. Vac. Sci. Technol. B6, 1170(1988)CrossRefGoogle Scholar
9. Spicer, W.E., Newman, N., Spindt, C.J., Liliental-Webber, Z. and Weber, E.R., J. Vac. Sci. Technol. B8, 2084(1990)CrossRefGoogle Scholar
10. Glembocki, O.J., Dagata, J.A., Giordana, A., Katzer, D.S. and Stutz, C.E., presented at the 1992 meeting of the American Vacuum Society, Chicago, IL, December, 1992; O.J. Glembocki, J.A. Dagata, E.A. Dobisz and D.S. Katzer, Proc. Mat. Res. Soc. 236 217(1992).CrossRefGoogle Scholar
11. Pollak, F.H., J. Vac. Sci. Technol., B11, 1710(1993).CrossRefGoogle Scholar