Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:32:10.442Z Has data issue: false hasContentIssue false

Photooxidation of Water Using Vertically Aligned Nanotube Arrays: A comparative study of TiO2, Fe2O3 and TaON nanotubes

Published online by Cambridge University Press:  31 January 2011

Mano Misra
Affiliation:
[email protected], University of Nevada, Reno, Materials Science and Engineering, 1664 N. Virginia St., MS 388, Reno, Nevada, 89557, United States
Subarna Banerjee
Affiliation:
[email protected], University of Nevada, Reno, Materials Science and Engineering, Reno, Nevada, United States
Susanta K Mohapatra
Affiliation:
[email protected], University of Nevada, Reno, Materials Science and Engineering, Reno, Nevada, United States
Shiny E John
Affiliation:
[email protected], University of Nevada, Reno, Materials Science and Engineering, Reno, United States
Cameron Howard
Affiliation:
[email protected], University of Nevada, Reno, Materials Science and Engineering, Reno, Nevada, United States
Get access

Abstract

There is a real need for a material which absorbs in the visible light of the solar spectrum, is stable in water and at the same time economical. One-dimensional vertically aligned nanotubes have contributed to a great extent towards the visible light driven photoelectrolysis of water. In this work, we give an overview of the different nanotubes obtained through anodization of various metals and their application in the photooxidation of water

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Turner, J. A. Science 285, 687 (1999).Google Scholar
2 Nowotny, J. Sorrell, C. C. Sheppard, L. R. Bak, T. Int. J. of Hydrogen Energy 30, 521 (2005).Google Scholar
3 Kamat, P. V. J. Phys. Chem. 111, 2834 (2007) and references are cited therein.Google Scholar
4 Blanchette, S. Jr. , Energy Policy 36, 522 (2008).Google Scholar
5 Fujishima, A. Honda, K. Nature 238 (5358), 37 (1972).Google Scholar
6 Osterloh, F. E. Chem. Mater. 20, 35 (2008).Google Scholar
7Solar Hydrogen GenerationRajeswar, K.S. McConnell, R. Litch, S., (Eds.), Springer, (2008).Google Scholar
8 Mor, G.K. Shankar, K. Paulose, M. Varghese, O.K. Grimes, C.A. Nano Lett. 5, 191 (2005).Google Scholar
9 Macak, J.M. Tsuchiya, H. Ghicov, A. Schmuki, P. Electrochem. Commun. 7, 1133 (2005).Google Scholar
10 Park, J. H. Kim, S. Bard, A.J. Nano Lett. 6, 24 (2006).Google Scholar
11 Raja, K.S. Misra, M. Mahajan, V.K. Gandhi, T. Pillai, P. Mohapatra, S.K. J. PowerSources 161, 1450 (2006).Google Scholar
12 Park, J. Bauer, S. Mark, K. von der, Schmuki, P. Nano Lett. 7, 1686 (2007).Google Scholar
13 Mohapatra, S.K. Misra, M. Mahajan, V.K. Raja, K.S. J. Phys. Chem. C 111, 8677 (2007).Google Scholar
14 Mohapatra, S.K. Misra, M. J. Phys. Chem. C 111, 11506 (2007).Google Scholar
15 Albu, S.P. Ghicov, A. Macak, J.M. Hahn, R. Schmuki, P. Nano Lett. 7, 1286 (2007).Google Scholar
16 Chanmee, W. Watcharenwong, A. Chenthamarakshan, C. Kajitvichyanukul, P. Tacconi, N. R. de, Rajeswar, K. J. Am. Chem. Soc. 130, 965 (2008).Google Scholar
17 Ampo, M. Shima, T. Kodama, S. Kubokawa, Y. J. Phys. Chem. 91, 4305 (1987).Google Scholar
18 Xu, Y. Zhu, Z.Z. Chen, W. Ma, G. Chin. J. Appl. Chem. 8, 28 (1991).Google Scholar
19 Wilke, K. Breuer, H.D. J. Photochem. Photobiol., A 121, 49 (1999).Google Scholar
20 Diebold, U. Surf. Sci. Rep. 48, 53 (2003).Google Scholar
21 Thompson, T.L. Yates, J.T. Jr. , Chem. Rev. 106, 4428 (2006).Google Scholar
22 Park, H. Vecitis, C.D. Choi, W. Weres, O., Hoffmann, M. R. J. Phys. Chem. C 112, 885 (2008).Google Scholar
23 Murphy, A.B. Barnes, P.R.F. Randeniya, L.K. Plumb, I.C. Grey, I.E. Horne, M.D. Glasscock, J.A., Int. J. Hydrogen Energy 31, 1999 (2006).Google Scholar