Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:00:21.066Z Has data issue: false hasContentIssue false

Photonic Crystals at Near-Infrared and Optical Wavelengths

Published online by Cambridge University Press:  17 March 2011

Alexander Moroz*
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlandshttp://www.amolf.nl/research/photonic materials theory/moroz/moroz.html
Get access

Abstract

As demonstrated for the example of a diamond and zinc blende structure of dielectric spheres, small inclusions of a low absorbing metal with the volume fraction fm can have a dramatic effect on a complete photonic band gap (CPBG) between the 2nd-3rd bands. For example, in the case of silica coated silver spheres, the CPBG opens for fm ≍ 1.1% and exceeds 5% for fm ≍ 2.5%. Consequently, any dielectric material can be used to fabricate a photonic crystal with a sizeable and robust CPBG in three dimensions. Absorption in the CPBG of 5% remains very small (≤ 2.6% for λ ≥ 750 nm). The structure enjoys almost perfect scaling, enabling one to scale the CPBG from microwaves down to ultraviolet wavelengths.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bykov, V. P., Sov. Phys. JETP 35, 269 (1972); Sov. J. Quant. Electron. 4, 861 (1975).Google Scholar
2. Ho, K. M., Chan, C. T., and Soukoulis, C. M., Phys. Rev. Lett. 65, 3152 (1990).Google Scholar
3. Yablonovitch, E., Gmitter, T. J., and Leung, K. M., Phys. Rev. Lett. 67, 2295 (1991).Google Scholar
4. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
5.Proceedings of the NATO ASI School “Photonic Crystals and Localization in the 21st Century”, ed. by Soukoulis, C. M. (Kluwer, Amsterdam, 2001)Google Scholar
6. Moroz, A., unpublished.Google Scholar
7. Moroz, A. and Sommers, C., J. Phys.: Condens. Matter 11, 997 (1999).Google Scholar
8. Levi, B. G., Phys. Today, January 1999, p. 17.Google Scholar
9. Moroz, A., Phys. Rev. Lett. 83, 5274 (1999).Google Scholar
10. Moroz, A., Europhys. Lett. 50, 466 (2000).Google Scholar
11. Zhang, W. Y., Lei, X. Y., Wang, Z. L., Zheng, D. G., Tam, W. Y., Chan, C. T., and Sheng, P., Phys. Rev. Lett. 84, 2853 (2000).Google Scholar
12. Wang, Z., Chan, C. T., Zhang, W., Ming, N., and Sheng, P., Phys. Rev. B 64, 113108 (2001).Google Scholar
13. Simeonov, S., Bass, U., and McGurn, A. R., Physica B 228, 245 (1996).Google Scholar
14. Moroz, A., Phys. Rev. B 51, 2068 (1995).Google Scholar
15. Williams, A. R. and Morgan, J. van W., J. Phys. C: Solid State 7, 37 (1974).Google Scholar
16. Johnson, S. G. and Joannopoulos, J. D., Opt. Express 8, 173 (2001).Google Scholar
17. Sözüer, H. S., Haus, J. W., and Inguva, R., Phys. Rev. B 45, 13962 (1992).Google Scholar
18. Megens, M., private communication.Google Scholar
19. Graf, C. and Blaaderen, A. van, Langmuir 18, 524 (2002).Google Scholar
20. Liz-Marzán, L. M., Giersig, M., and Mulvaney, P., Langmuir 12, 4329 (1996).Google Scholar
21. Fan, S., Villeneuve, P. R., and Joannopoulos, J. D., Phys. Rev. B 54, 11245 (1996).Google Scholar
22. Yannopapas, V., Stefanou, N., and Modinos, A., Comp. Phys. Commun. 113, 49 (1998).Google Scholar