Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:30:23.725Z Has data issue: false hasContentIssue false

Photoluminescence Variation With Temperature in ZnO:Ag Nanorods obtained by Ultrasonic Spray Pyrolysis

Published online by Cambridge University Press:  19 November 2013

E. Velázquez Lozada*
Affiliation:
ESIME – Instituto Politécnico Nacional, México D.F. 07738, México.
S. Mera Luna
Affiliation:
ESIQE – Instituto Politécnico Nacional, México D.F. 07738, México.
L. Castañeda
Affiliation:
ESIME – Ticomán – Instituto Politécnico Nacional, México D.F. 07340, México.
Get access

Abstract

The photoluminescence, its temperature dependences, as well as structural characteristics obtained by the method of Scanning electronic microscopy (SEM) have been studied in ZnO:Ag nanorods prepared by the ultrasonic spray pyrolysis (USP). PL spectra of ZnO:Ag NRs in the temperature range from 10 K to 300 K are investigated. Three types of PL bands have been revealed: i) the near-band-edge (NBE) emission, ii) defect related emission and iii) IR emission. It is shown that IR emission corresponds to the second-order diffraction of near-band-edge (NBE) emission bands. The study of NBE PL temperature dependences reveals that the acceptor bound exciton (ABE) and its second-order diffraction peak disappeared at the temperature higher than 200 K. The attenuation of the ABE peak intensity is ascribed to the thermal dissociation of ABE with appearing a free exciton (FE). The PL bands, related to the LO phonon replica of FE and its second-order diffraction, dominate in the PL spectra at room temperature that testify on the high quality of ZnO:Ag films prepared by the USP technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T., Prog. Mater. Sci. 50, 293 (2005).CrossRefGoogle Scholar
Koch, M.H., Timbrell, P.Y., Lamb, R.N., Semicond. Sci. Technol. 10, 1523 (1995).CrossRefGoogle Scholar
Vanheusden, K., Seager, C.H., Wareen, W.L., Tallant, D.R., Caruso, J., Hampden-Smith, M.J., Kodas, T.T., J. Lumin.75, 11 (1997).CrossRefGoogle Scholar
Scheer, R., Walter, T., Schock, H.W., Fearheiley, M.L., Lewerenz, H.J., Appl. Phys. Lett. 63, 3294 (1993).CrossRefGoogle Scholar
Chen, Y., Baghall, D.M., Koh, H., Park, K., Hiraga, K., Zhu, Z., Yao, T., J. Appl. Phys. 84, 3912 (1998).Google Scholar
Li, Y.B., Bando, Y., Golberg, D., Appl. Phys. Lett. 84, 3603 (2004).CrossRefGoogle Scholar
Ding, J., McAvoy, T.J., Cavicchi, R.E., Semancik, S., Sens. Actuat. B 77, 597 (2001).CrossRefGoogle Scholar
Tang, W., Cameron, D.C., Thin Solid Films 238, 83 (1994).CrossRefGoogle Scholar
Dybic, M., Ostapenko, S., Torchynska, T.V., Velazquez Lozada, E., Appl. Phys. Lett. 84(25), 5165 (2004)CrossRefGoogle Scholar
Torchynska, T. V., Diaz Cano, A.I., Dybic, M., Ostapenko, S., Mynbaeva, M., Physica B, Condensed Matter, 376-377, 367 (2006)CrossRefGoogle Scholar
Torchynska, T.V., Palacios Gomez, J., Polupan, G.P., Becerril Espinoza, F.G., Garcia Borquez, A., Korsunskaya, N.E., Khomenkova, L.Yu., Appl. Surf. Science, 167, 197204 (2000).CrossRefGoogle Scholar
Djuris, A. B., Ng, A.M.C., Chen, X.Y.. Progress in Quantum Electronics 34. 191259 (2010).CrossRefGoogle Scholar
Lv, J., Liu, Ch., Gong, W., Zi, Zh., Chen, X., Huang, K., Wang, T., He, G., Shi, Sh., Song, X., Sun, Zh., Optical Materials, 34, 1917 (2012).CrossRefGoogle Scholar
Mahalingam, T., Lee, K.M., Park, K.H., Lee, S., Ahn, Y., Park, J.Y., Koh, K.H., Nanotechnology 18, 035606 (2007).CrossRefGoogle Scholar
Voss, T., Bekeny, C., Wischmeier, L., Gafsi, H., Borner, S., Schade, W., Mofor, A.C., Bakin, A. and Waag, A., Appl. Phys. Lett. 89, 182107 (2006).CrossRefGoogle Scholar
Patra, M.K., Manzoor, K., Manoth, M., Vadera, S.P., Kumar, N., J. Lumin. 128(2) 267272 (2008).CrossRefGoogle Scholar
Garces, N.Y., Wang, L., Bai, L., Giles, N.C., Halliburton, L.E., Cantwell, G., Appl. Phys. Lett. 81(4) 622624 (2002).CrossRefGoogle Scholar
Djurišic, A.B., Choy, W.C.H., Roy, V.A.L., Leung, Y.H., Kwong, C.Y.. Cheah, K.W., Gundu Rao, T.K., Chan, W.K., Lui, H.F., Surya, C., Adv. Funct. Mater. 14, 856864 (2004).CrossRefGoogle Scholar
Liu, X., Wu, X., Cao, H., Chang, R.P.H., J. Appl. Phys. 95(6) 31413147 (2004).CrossRefGoogle Scholar
Qiu, J., Li, X., He, W., Park, S.-J., Kim, H.-K., Hwang, Y.-H., Lee, J.-H., Kim, Y.-D., Nanotechnology 20 155603 (2009).CrossRefGoogle Scholar
Torchinskaya, T.V., Korsunskaya, N.E., Dzumaev, B., Bulakh, B.M., Smiyan, O.D., Kapitanchuk, A.L., Antonov, S.O., Semiconductors, 30, 792796 (1996).Google Scholar