Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:38:30.524Z Has data issue: false hasContentIssue false

Photoluminescence Studies on Cu and O Defects in Crystalline and Thin-film CdTe

Published online by Cambridge University Press:  01 February 2011

Caroline R. Corwine
Affiliation:
Colorado State University, Fort Collins, CO 80523
Timothy A. Gessert
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
James R. Sites
Affiliation:
Colorado State University, Fort Collins, CO 80523
Wyatt K. Metzger
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Pat Dippo
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Jingbo Li
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Anna Duda
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Glenn Teeter
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

Polycrystalline thin-film CdTe is one of the leading materials used in photovoltaic solar cells. One way to improve device performance and stability is through understanding how various process steps alter defect states in the CdTe layer. Low-temperature photoluminescence (PL) studies show a 1.456-eV PL peak in single-crystal CdTe that is likely due to a Cui-OTe defect complex. A similar peak, observed in as-deposited glass/SnO2:F/CdS/CdTe thin-film structures, strongly suggests a common origin. The 1.456-eV peak is also seen in a thin-film sample after performing the CdCl2 treatment needed for high efficiencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rose, D. H., Ph.D. thesis, University of Colorado, Boulder, CO (1997).Google Scholar
2 Vigil-Galan, O., Vaillant, L., Mendoza-Perez, R., Contreras-Puente, G., Vidal-Larramendi, J., Morales-Acevedo, A., J. App. Phys. 90, 3427 (2001).Google Scholar
3 Tang, C.W. and Vazan, F., J. App. Phys. 55, 3886 (1984).Google Scholar
4 Albin, D., McMahon, T., Berniard, T., Pankow, J., Demtsu, S., and Noufi, R., 31st IEEE PV Spec. Conf. Proc., Piscataway, NJ, 2005, in press.Google Scholar
5 Halliday, D. P., Potter, M.D.G., Boyle, D.S., and Durose, K., Mater. Res. Soc. Proc. 668, Warrendale, PA, 2001 pp. H1.8–H1.8.6.Google Scholar
6 Grecu, D., and Compaan, A.D., App. Phys. Lett. 75, 361363 (1999).Google Scholar
7 Valdna, V., Hiie, J., Gavrilov, A., Solid State Phenomena 80-81, 155 (2001).Google Scholar
8 Rose, D.H., Hasoon, F.S., Dhere, R.G., Albin, D.S., Ribelin, R.M., Li, X.S., Mahathongdy, Y., Gessert, T.A., and Sheldon, P., Prog. Photovolt. 7, 331 (1999).Google Scholar
9 Barth, K. L., Enzenroth, R. A., Sampath, W. S., 29th IEEE PV Spec. Conf. Proc., Piscataway, NJ, 2002, pp. 551554.Google Scholar
10 Zanio, K., in Semiconductors and Semimetals Vol. 13, 1st ed. (Academic Press, New York, 1978) p. 101.Google Scholar
11 Kresse, G. and Hafner, J., Phys. Rev. B47, 558 (1993).Google Scholar
12 Hildebrandt, S., Uniewski, H., Schreiber, J., and Leipner, H.S., J. Physique III 7, 1505 (1997).Google Scholar
13 Boer, K. W., in Survey of Semiconductor Physics, 1st ed. (Van Nostrand Reinhold, New York, 1990) pp. 516520.Google Scholar
14 Wei, S.H. and Zhang, S.B., Phys. Rev. B66, 155211–1 (2002).Google Scholar
15 Gessert, T.A., Smith, S., Moriarty, T., Asher, S., Johnston, S., Duda, A., DeHart, C., and Fahrenbruch, A.L., 31st IEEE PV Spec. Conf. Proc., Piscataway, NJ, 2005, in press.Google Scholar