Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:23:30.705Z Has data issue: false hasContentIssue false

Photoluminescence Quenching Spectroscopy of Trapmediated Er3+ Excitation Mechanisms in Er-Implanted GaN

Published online by Cambridge University Press:  10 February 2011

S. J. Rhee
Affiliation:
Microelectronics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
S. Kim
Affiliation:
Microelectronics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
X. Li
Affiliation:
Microelectronics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
J. J. Coleman
Affiliation:
Microelectronics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
S. G. Bishop
Affiliation:
Microelectronics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Get access

Abstract

Two-source optical quenching spectroscopy demonstrates that the four site-selective Er3+ photoluminescence (PL) spectra observed in Er-implanted GaN contribute to the above-gap excited Er3+ PL spectrum, with relative efficiencies determined by the carrier capture cross sections and concentrations of the defects or traps which mediate the excitation of each Er site. The above-gap pumped PL spectrum is dominated by two of the trap-mediated Er3+ PL spectra, while the highest concentration Er site, which is efficiently pumped only by direct 4f absorption, contributes only weakly. These experiments indicate that the same defects and impurities are involved in the trapmediated processes responsible for both the above- and the below-gap excitations of the Er3+ PL.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, S., Rhee, S. J., Turnbull, D. A., Reuter, E. E., Li, X., Coleman, J. J., and Bishop, S. G., Appl. Phys. Lett. 71, 231 (1997).10.1063/1.119507Google Scholar
2. Kim, S., Rhee, S. J., Turnbull, D. A., Li, X., Coleman, J. J., and Bishop, S. G., Mater. Res. Soc. Symp. Proc. 468, 131 (1997).Google Scholar
3. Kim, S., Rhee, S. J., Turnbull, D. A., Li, X., Coleman, J. J., and Bishop, S. G., Appl. Phys. Lett. 71, 2662 (1997).Google Scholar
4. Wu, X., Hommerich, U., Mackenzie, J. D., Abernathy, C. R., Pearton, S. J., Schwartz, R. N., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett. 70, 2126 (1997).Google Scholar
5. Torvik, J. T., Qiu, C. H., Feuerstein, R. J., Pankove, J. I., and Namvar, F., J. Appl. Phys. 81. 6343 (1997).10.1063/1.364369Google Scholar