Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T21:23:09.236Z Has data issue: false hasContentIssue false

Photoluminescence Properties of Er-Doped Porous Silicon

Published online by Cambridge University Press:  15 February 2011

U. Hömmerich
Affiliation:
Hampton University, Research Center for Optical Physics, Hampton, VA 23668
X. Wu
Affiliation:
Hampton University, Research Center for Optical Physics, Hampton, VA 23668
F. Namavar
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01876
A. M. Cremins-Costa
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01876
K. L. Bray
Affiliation:
University of Wisconsin-Madison, Department of Chemical Engineering, 1415 Johnson Drive, Madison, WI 53706
Get access

Abstract

We present a photoluminescence study of erbium implanted into porous silicon (Er:PSi) with two different Si porosities, a) Er:PSi with a purple appearance and b) with a green-yellow appearance. Er was implanted with a dose of 1×1015 Er/cm2 at 380 keV and annealed at 650°C for 30 minutes. Room-temperature 1.54μm Er3+ emission was observed from both samples. The emission from purple Er:PSi was four times stronger than that from green-yellow Er:PSi. In contrast, visible luminescence from green-yellow Er:PSi was found to be stronger than that from purple Er:PSi. Temperature quenching and power dependence was investigated to elucidate the excitation mechanisms of Er3+ in porous silicon. The results support a correlation between nanostructures of porous Si and 1.54 μm Er3+ luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Xie, Y. H., Wilson, W. L., Ross, F. M., Mucha, J. A., Fitzerald, E. A., Mcaulay, J. M., and Harris, T. D., J. Appl. Phys. 71, 2403 (1992).Google Scholar
3. Cole, M. W., Harvey, J. F., Lux, R. A., Eckart, D. W., and Tsu, R., Appl. Phys. Lett. 60, 2800 (1992).Google Scholar
4. Namavar, , III-V Rev. 7, 10(1994), and presented at Rare Earth Doped Optoelectronic Materials Workshop, Malibu, CA June 16 1994. F.Namavar, F.Lu, C.H.Perry, A.Cremins, N.M.Kalkhoran, R.A.Soref, Mat. Res. Soc. Symp. Proc. 358, 375 (1995).Google Scholar
5. Namavar, F., Lu, F., Perry, C. H., Cremins, A., Kalkhoran, N. M., Soref, R. A., J. Appl. Phys. 77, 4813 (1995). F.Namavar, F.Lu, C.H.Perry, A.Cremins, N.M. Kalkhorn, R.A.Soref, J. Electr. Mat. 1, 1996, 43.Google Scholar
6. Shin, Jung H., van den Hoven, G. N., and Pohlman, A., Appl. Phys. Lett. 66, 2379 (1995).Google Scholar
7. Kimura, T., Yokoi, A., Horiguchi, H., Saito, R., Ikoma, T., and Sato, A., Appl. Phys. Lett. 65, 983 (1994).Google Scholar
8. Dorofeev, A. M., Gaponenko, N. V., Bondarenko, V. P., Bachilo, E. E., Kazuchits, N. M., Leshok, A. A., Troyanova, G. N., Voroso, N. N., Borisenko, V. E., Gnaser, H., Bock, W., Becker, P., and Oechsner, H., J. Appl. Phys. 77, 2679 (1995).Google Scholar
9. Favennec, P. N., L'Harldon, H., Moutonnet, D., Salvi, M., and Gauneau, M., Mat. Res. Soc. Symp. Proc. 301, 181 (1993).Google Scholar
10. Coffa, S., Priolo, F., Franzo, G., Bellani, V., Camera, A., and Spinella, C., Phys. Rev. B 48, 11782 (1993).Google Scholar
11. Benyattou, T., Seghier, D., Guillot, G., Moncorge, R., Galtier, P. and Charasse, M., Mat. Res. Soc. Symp. Proc. Vol.163, 69 (1990).Google Scholar