Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:32:12.606Z Has data issue: false hasContentIssue false

Photoluminescence of Si/SiO2, RE2O3/Si/SiO2 and RE2O3/Si/Al2O3 (RE = Er, Nd, Tm) Sputtered Thin Films

Published online by Cambridge University Press:  01 February 2011

C. Rozo
Affiliation:
Physics Department, University of Puerto Rico at Rio Piedras, San Juan, PR, USA
L. F. Fonseca
Affiliation:
Physics Department, University of Puerto Rico at Rio Piedras, San Juan, PR, USA
O. Resto
Affiliation:
Physics Department, University of Puerto Rico at Rio Piedras, San Juan, PR, USA
S. Z. Weisz
Affiliation:
Physics Department, University of Puerto Rico at Rio Piedras, San Juan, PR, USA
Get access

Abstract

Si/SiO2, RE2O3/Si/SiO2 and RE2O3/Si/Al2O3 films were sputtered. Si/SiO2 films were annealed to 1100°C for 30 min in Ar. RE2O3/Si/SiO2 films were annealed to 700°C, 1000°C, or 1100°C for 30 min in Ar. RE2O3/Si/Al2O3 films were annealed to 700°C for 30 min in Ar. Raman spectra and photoluminescence (PL) obtained for the Si/SiO2 films show relation between Si nanocrystal (nc) presence, Si nanoparticle (np) PL and Si target area. Nd2O3 co-sputtered films presented PL for the (4F5/2, 2H9/2) → 4I9/2, 4F3/24I9/2, 4F3/24I11/2, and 4F3/24I13/2 transitions. Er2O3 co-sputtered films presented PL for the 4I11/24I15/2, and 4I13/24I15/2 transitions. Tm2O3 co-sputtered films presented PL for the 3H43H6 transition. Different spectral shapes were observed for the infrared (IR) PL of the Er3+ ions and of the Nd3+ ions for the RE2O3/Si/Al2O3 films with respect to the RE2O3/Si/SiO2 films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., Yamamoto, K., Appl. Phys. Lett. 71, 1198 (1997)Google Scholar
2. Franzò, G., Vinciguerra, V., Priolo, F., Appl. Phys. A 69, 3 (1999)Google Scholar
3. Zhu, Y., Wang, H., Ong, P. P., J. Phys. D: Appl. Phys. 33, 2687 (2000)Google Scholar
4. Zhu, Y., Ong, P. P., J. Phys.: Condens. Matter 13, L189 (2001)Google Scholar
5. Polman, A., J. Appl. Phys. 82, 1 (1997)Google Scholar
6. Tanabe, S., J. Non-Cryst. Solids 259, 1 (1999)Google Scholar
7. Baesso, M. L., Bento, A. C., Miranda, L. C. M., de Souza, D. F., Sampaio, J. A., Nunes, L. A. O., J. Non-Cryst. Solids 276, 8 (2000)Google Scholar
8. Lezal, D., Pedlikova, J., Kotska, P., Bludska, J., Poulain, M., Zavadil, J, J. Non-Cryst. Solids 284, 288 (2001)Google Scholar
9. Rozo, C., Fonseca, L. F., Resto, O., Weisz, S. Z., Mat. Res. Soc. Symp. Proc. vol. 737 F3.46.1 (2003)Google Scholar
10. Hemley, R. J., Mao, H. K., Bell, P.M., Mysen, B. O., Phys. Rev. Lett. 57, 747 (1986)Google Scholar
11. Boizot, B., Agnello, S., Reynard, B., Boscaino, R., Petite, G., J. Non-Cryst. Solids 325, 22 (2003)Google Scholar
12. Inokuma, T., Wakayama, Y., Muramoto, T., Aoki, R., Kurata, Y., Hasegawa, S., J. Appl. Phys. 83, 2228 (1998)Google Scholar
13. Terukov, E.I., Kudoyarova, V. Kh., Davydov, V. Yu., Koughia, K. V., Weiser, G., Mell, H., Mater. Sci. Engin. B 69–70, 266 (2000)Google Scholar
14. Mavi, H. S., Rasheed, B. G., Soni, R. K., Abbi, S. C., Jain, K. P., Thin Solid Films 397, 125 (2001)Google Scholar
15. Kanemitsu, Y., Uto, H., Masumoto, Y., Matsumoto, T., Futagi, T., Mimura, H., Phys. Rev. B 48, 2827 (1993)Google Scholar
16. Watanabe, K., Tamaoka, H., Fujii, M., Hayashi, S., J. Appl. Phys. 92, 4001 (2002)Google Scholar
17. Wan, J., Sheng, C., Lu, F., Yuan, S., Gong, D. W., Liao, L. S., Fang, Y. L., Lin, F., Wang, X., J. Lumin. 80, 369 (1999)Google Scholar
18. Priolo, F., Franzò, G., Iacona, F., Pacifici, D., Vinciguerra, V., Mater. Sci. Engin. B 81, 9 (2001)Google Scholar