Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:55:15.115Z Has data issue: false hasContentIssue false

Photoluminescence Intensity Enhancement of GaAs by Vapor-Deposited GaS: a Rational Approach to Surface Passivation

Published online by Cambridge University Press:  22 February 2011

Phillip P. Jenkins
Affiliation:
Sverdrup Technology, Inc., Lewis Research Center Group, 2001 Aerospace Parkway, Brook Park, OH 44142
Aloysius F. Hepp
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, MS 302–1, Cleveland, OH 44135.
Michael B. Power
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, MS 302–1, Cleveland, OH 44135. Department of Chemistry and Materials Research Laboratory, Harvard University, Cambridge, MA 02138.
Andrew R. Macinnes
Affiliation:
Department of Chemistry and Materials Research Laboratory, Harvard University, Cambridge, MA 02138. Gallia, Inc., 53 Beaver Rd., Weston, MA 02193
Andrew R. Barrontt
Affiliation:
Gallia, Inc., 53 Beaver Rd., Weston, MA 02193
Get access

Abstract

A two order-of-magnitude enhancement of photoluminescence intensity relative to untreated GaAs has been observed for GaAs surfaces coated with chemical vapor-deposited GaS. The increase in photoluminescence intensity can be viewed as an effective reduction in surface recombination velocity and/or band bending. The gallium cluster [(t-Bu)GaS]4 was used as a single-source precursor for the deposition of GaS thin films. The cubane core of the structurally-characterized precursor is retained in the deposited film producing a cubic phase. Furthermore, a near-epitaxial growth is observed for the GaS passivating layer. Films were characterized by transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron and Rutherford backscattering spectroscopies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Massies, J., Chaplart, J., Laviron, M., and Linh, N. T., Appl. Phys. Lett. 38, 693 (1981).Google Scholar
[2] Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).Google Scholar
[3] Yablonovitch, E., Sandroff, C. J., Bhat, R., and Gmitter, T., Appl. Phys. Lett. 51, 439 (1987).Google Scholar
[4] Sandroff, C. J., Hegde, M. S., Farrow, L. A., Harbison, J. P., Bhat, R., and Chang, C. C., J. Appl. Phys. 67, 586 (1990).Google Scholar
[5] Lee, H.H., Racicot, R. J., and Lee, S. H., Appl. Phys. Lett. 54, 724 (1989).Google Scholar
[6] Yablonovitch, E., Gmitter, T. J., and Bagley, B. G., Appl. Phys. Lett. 57, 2241 (1990).Google Scholar
[7] Lunt, S. R., Santangelo, P. G., and Lewis, N. S., J. Vac. Sci. Technol. B 9, 2333 (1991).Google Scholar
[8] Chambers, S. A. and Sundaram, V. S., J. Vac. Sci. Technol. B 8, 2256 (1991).Google Scholar
[9] Ueno, K., Abe, H., Saiki, K., Koma, A., Oigawa, H., and Nannichi, Y., Surf. Sci. 267, 43 (1992).Google Scholar
[10] Hou, X. Y., Cai, W. Z., He, Z. Q., Hao, P. H., Li, Z. S., Ding, X. M., and Wang, X., Appl. Phys. Lett. 60, 2252 (1992).Google Scholar
[11] Sandroff, C. J., Hegde, M. S., Farrow, L. A., Chang, C. C., and Harbison, J. P., Appl. Phys. Lett. 54, 362 (1989).Google Scholar
[12] Sandroff, C. J., Hegde, M. S., and Chang, C. C., J. Vac. Sci. Technol. B 7, 841 (1989).Google Scholar
[13] Wang, Y., Darici, Y., and Holloway, P. H., J. Appl. Phys. 71, 2746 (1992).Google Scholar
[14] MacInnes, A. N., Power, M. B., and Barron, A. R., Chem. Mater. 4, 11 (1992).Google Scholar
[15] Power, M. B. and Barron, A. R., J. Chem. Soc., Chem. Comm., 1315 (1991).Google Scholar
[16] Power, M. B., Ziller, J. W., Tyler, A. N., and Barron, A. R., Organometallics 11, 1055 (1992).Google Scholar
[17] Landry, C. C., Cheatham, L. K., MacInnes, A. N., and Barron, A. R., Adv. Mater. Optics and Electronics 1, 3 (1992).Google Scholar
[18] Jenkins, P., Ghalla-Goradia, M., Faur, M., Bailey, S., and Faur, M., Proceedings 21st IEEE Photovoltaic Specialists Conference, Vol. 1, (Institute Electrical and Electronics Engineers, New York, 1990) p. 399.Google Scholar
[19] Sze, S. M., Semiconductor Devices, Physics and Technology (John Wiley and Sons, New York, 1985), p. 513.Google Scholar