Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:37:35.039Z Has data issue: false hasContentIssue false

Photoluminescence from Nanocrystalline Silicon Prepared by Plasma CVD and Oxidation

Published online by Cambridge University Press:  25 February 2011

S. Veprek
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstraβe 4, D-W 8046 Garching/Munich, Germany
M. Rückschloβ
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstraβe 4, D-W 8046 Garching/Munich, Germany
B. Landkammer
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstraβe 4, D-W 8046 Garching/Munich, Germany
O. Ambacher
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstraβe 4, D-W 8046 Garching/Munich, Germany
Get access

Abstract

Light emitting nanocrystalline silicon has been prepared by a completely dry processing which uses standard silicon technology. This enables us to prepare compact films on various substrates and to control the crystallite size. Dependence of the photoluminescence intensity and its peak energy on the crystallite size is reported and compared with current theoretical models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lehmann, V. and Gösek, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
[2] Cunham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[3] Bustarret, E., Ligeon, M., Bruyere, J. C., Muller, F., Heerino, R., Gaspard, F., Ortega, L. and Stutzmann, M., Appl. Phys. Lett. 61, 1552 (1992).Google Scholar
[4] Hummel, R. E. and Chang, Sung-Sig, Appl. Phys. Lett. 61, 1965 (1992), MRS Symp. Proc. 283 (Fall Meeting, Boston, Dec. 1992, in press).Google Scholar
[5] Takagi, H., Ogawa, H., Yamazahi, Y., Ishizaki, A. and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
[6] Brus, L., Appl. Phys. A 53, 465 (1991).Google Scholar
[7] Maeda, Y., Uto, H., Kanemitsu, Y. and Masumoto, Y., Int. Conf. on Solid State Devices and Materials, Tsukuba 1992, MRS Symp. Proc. 283 (Fall Meeting, Boston, Dec. 1992, in press).Google Scholar
[8] Heath, J. R., this volume, paper B 4.1.Google Scholar
[9] Berhane, S., Kauzlarich, S. M., Nishimura, K., Smith, R. L., Olson, M. L. S., Lee, H. W. H. and Chase, L. L., this volume, paper B 4.2.Google Scholar
[10] Rückschloβ, M., Landkammer, B., Ambacher, O. and Vepiek, S., MRS Symp. Proc. 283 (Fall Meeting, Boston, Dec. 1992, in press).Google Scholar
[11] Rückschloβ, M., Landkammer, B. and Veprek, S., Appl. Phys. Lett., submitted.Google Scholar
[12] Sze, S. M., Physics of Semiconductor Devices, J. Wiley & Sons Inc., Singapore 1981.Google Scholar
[13] Klug, H. P., Alexander, L. E., X-Ray Diffraction Procedures, John Wiley & Sons, New York 1974.Google Scholar
[14] Rückschloβ, M., Ph. D. Thesis, Tech. University Munich 1993.Google Scholar
[15] Delley, B. and Steigmeier, E. F., Phys. Rev. B 47, 1397 (1993).Google Scholar
[16] Mott, N. F., Davis, E. A., Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford 1979.Google Scholar
[17] Koch, F., Petrova-Koch, V., Muschik, T., Nikolov, A. and Gavrilenko, V., MRS Symp. Proc. 283 (Fall Meeting, Boston, Dec. 1992, in press).Google Scholar
[18] Gavrilenko, V., Vogl, P. and Koch, F., MRS Symp. Proc. 283 (Fall meeting, Boston Dec. 1992, in press).Google Scholar