Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:31:56.688Z Has data issue: false hasContentIssue false

Photoluminescence from Microcrystalline Silicon and Related Materials

Published online by Cambridge University Press:  28 February 2011

M. Rlickschloss
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching/Munich, Germany
B. Landkammer
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching/Munich, Germany
O. Ambacher
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching/Munich, Germany
S. Vepřek*
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching/Munich, Germany
*
*) Author to whom correspondence should be addressed
Get access

Abstract

Intense photoluminescence has been obtained from nanocrystal-line silicon prepared in completely dry processing by the optimizing the crystallite size and the chemical passivation of the grain boundaries due to a controlled postoxidation of the plasma deposited films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
[2] Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991)Google Scholar
[3] Mater. Res. Soc. Proc., Fall Meeting, Boston December 1992 Maters. Res. Symp. Proc. 283, in pressGoogle Scholar
[4] Petrova-Koch, V., Muschnik, T., Kux, A., Meyer, B.K. and Koch, F., Appl. Phys. Lett. 61, 943 (1992)Google Scholar
[5] Shih, S., Tsai, C., Li, K.-H., Jung, K.H., Campbell, J.C. and Kwong, D.L., Appl. Phys. Lett. 60(1992)633 Google Scholar
[6] Halimaoui, A., Oules, C. and Bomchil, G., Appl. Phys. Lett. 59, 304 (1991)Google Scholar
[7] Bustarret, E., Ligeon, M., Bruyere, J.C., Muller, F., Hérino, R., Gaspard, F., Ortega, L. and Stutzmann, M., Appl. Phys. Lett. 61, 1552 (1992)Google Scholar
[8] Wolford, D.J., Reimer, J.A. and Scott, B.A., Appl. Phys. Lett. 42, 370 (1983)Google Scholar
[9] Carius, R., Fischer, R., Holzenkampfer, E. and Stucke, J., J. Appl. Phys. 524241(1981)Google Scholar
[10] Komuro, S., Aoyagi, Y., Segawa, Y. and Namba, S., J. Appl. Phys. 58, 943 (1985)Google Scholar
[11] Veprek, S. and Sarott, F.-M., (1980) unpublished resultsGoogle Scholar
[12] Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A. and Hakagiri, T., Appl. Phys. Lett. 56, 2379 (1990)Google Scholar
[13] Ito, T., Ohta, T. and Hiraki, A., Jpn. J. Appl. Phys. 31, L1(1992)Google Scholar
[14] Osaka, Y., Tsunetomo, K., Toyomura, F., Myoren, H. and Kohno, K., Jpn. J. Appl. Phys. 31, L365(1992)Google Scholar
[15] Veprek, S. and Marecek, V., Solid-state Electron. 11, 683 (1968)Google Scholar
[16] Veprek, S. and Heintze, M., Plasma Chem. Plasma Process. 10, 3 (1990)Google Scholar
[17] Veprek, S., Iqbal, Z. and Sarott, F.-A., Phil. Mag. B 45, 137 (1982)Google Scholar
[18] Konuma, M., Curtins, H., Sarott, F.-A. and Veprek, S., Phil. Mag. B 55, 377(1987)Google Scholar
[19] Veprek, S., Sarott, F.-A. and Iqbal, Z., Phys. Rev. B 36, 3344 (1987)Google Scholar
[20] Veprek, S., Mater. Res. Soc. Proc. 164, 39 (1990)Google Scholar
[21] The sample has been provided by Dr. V. Petrova-Koch [4]Google Scholar
[22] Kux, A., Muller, F. and Koch, F., this proceedings, paper F14.13 Google Scholar
[23] Muschik, Th., Petrova-Koch, V., Kux, A. and Koch, F., Mater. Res. Soc. Proc. 164, F14.17 Google Scholar
[24] Trunkin, A.N. and Plaudis, A.E., Sov. Phys. Solid State 21, 644 (1979)Google Scholar