No CrossRef data available.
Article contents
Photoluminescence Fatigue in Laterally-Ordered (GaP)2/(InP)2 Short-Period-Superlattices (SPS) Grown by Molecular Beam Epitaxy
Published online by Cambridge University Press: 22 February 2011
Abstract
Spontaneously laterally ordered (GaP)2/(InP)2 short period superlattices (SPS) grown by Molecular Beam Epitaxy (MBE) on nominal (100) GaAs substrates have been studied by photoluminescence (PL) spectroscopy. The samples studied included SPS comprising 110 pairs of (GaP)2/(InP)2 (total thickness σ90 nm) and multiquantum well structures in which quantum wells comprising 12 pairs of (GaP)2/(InP)2 SPS layers (thickness σ10 nm) are alternated with lattice-matched GaInP random alloy barrier layers. The 5K PL spectra include a σ1760 meV nearband edge band, and a much broader, lower energy (σ1670 meV) luminescence band that exhibits an unusual fatiguing behavior; its intensity diminishes monotonically during continuous illumination by the exciting light. This fatigued PL state is metastable at low temperatures. In the quantum well structure, although the relative intensity of the lower energy band is significantly weaker in comparison to the higher one, the fatiguing behavior still exists. However the fatiguing rate is slower in quantum well structures than that observed in the thick SPS film.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994