Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:52:23.985Z Has data issue: false hasContentIssue false

Photoluminescence Excitation Dependence in Three-dimensional Si/SiGe Nanostructures

Published online by Cambridge University Press:  01 February 2011

Eun-Kyu Lee
Affiliation:
[email protected], New Jersey Institute of Technology, Electrical and Computer Engineering, University Heights, Newark, NJ, 07102, United States
Boris V. Kamenev
Affiliation:
[email protected], New Jersey Institute of Technology, Electrical and Computer Engineering, Newark, NJ, 07102, United States
Theodore I. Kamins
Affiliation:
[email protected], Quantum Science Research, Hewlett-Packard Laboratories, Palo Alto, CA, 94304, United States
Jean-Marc Baribeau
Affiliation:
[email protected], Instutute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
David J. Lockwood
Affiliation:
[email protected], Instutute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
Leonid Tsybeskov
Affiliation:
[email protected], New Jersey Institute of Technology, Electrical and Computer Engineering, Newark, NJ, 07102, United States
Get access

Abstract

We find that in SiGe clusters grown on Si using Stranski-Krastanov (S-K) growth mode, (i) photoluminescence (PL) spectra, (ii) PL lifetime and (iii) PL thermal quench activation energies exhibit strong dependence on the excitation intensity. Under PL excitation intensity increasing from 1 to 104 W/cm2, the PL spectra exhibit blue shift from below Ge bandgap up to ∼970 meV. The PL lifetime shows strong dependence on the excitation wavelength, decreasing from 20 μs at ∼0.8 eV to 200 ns at ∼ 0.9 eV. The process of PL thermal quench has two clearly distinguished activation energies. At low temperature, small (∼15 meV) and excitation-independent activation energy is attributed to exciton thermal dissociation. At higher temperature, excitation-dependent PL thermal quench activation energy (increasing from ∼ 120 to 340 meV as excitation intensity increases) is found, and it is attributed to hole redistribution via tunneling and/or thermal ionization over the Si/SiGe valence band energy barrier.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shiraki, Y., Sunamura, H., Usami, N., and Fukatsu, S., Appl. Surf. Sci. 102, 263 (1996).Google Scholar
2. Kamenev, B. V., Lee, E.-K., Chang, H.-Y., Han, H., Grebel, H., Tsybeskov, L., and Kamins, T. I., Appl. Phys. Lett. 89, 153106 (2006).Google Scholar
3. Kamenev, B. V., Tsybeskov, L., Baribeau, J.-M, and Lockwood, D. J., Phys. Rev. B 72, 193306 (2005).Google Scholar
4. Lenchyshyn, L. C., Thewalts, M. L. W., Sturm, J. C., Schwartz, P. V., Prinz, E. J., Rowell, N. L., Noël, J.-P., and Houghton, D. C., Appl. Phys. Lett. 60, 3174 (1992).Google Scholar
5. Iyer, S. S., Xie, Y.-H., Science 260, 40 (1993).Google Scholar
6. Thewalt, M. L. W., Harrison, D. A., Reinhart, C. F., Wolk, J. A., Lafontaine, H., Phys. Rev. Lett. 79, 2 (1997).Google Scholar
7. Shmidt, O. G., Lange, C., and Eberl, K., Appl. Phys. Lett. 75, 1905 (1999).Google Scholar
8. Wan, J., Jin, G. L., Jiang, Z. M., Luo, Y. H., Liu, J. L., and Wang, K. L., Appl. Phys. Lett. 78, 1763 (2001).Google Scholar
9. Weber, J., and Alonso, M. I., Phys. Rev. B 40, 5683 (1989).Google Scholar
10. Lautenschlager, P., Allen, P. B., and Cardona, M., Phys. Rev. B 31, 2163 (1985).Google Scholar
11. Fukatsu, S., Sunamura, H., Shiraki, Y., and Komiyama, S., Appl. Phys. Lett. 71, 258 (1997).Google Scholar