Article contents
Photoluminescence Characterization of Defects Introduced in 4H-SiC During High Energy Proton Irradiation and Their Annealing Behavior
Published online by Cambridge University Press: 15 March 2011
Abstract
We report on the optical properties of defects introduced in epitaxial 4H-SiC by 2 MeV protons using photoluminescence spectroscopy. The near band edge characteristics of nitrogen-doped n-type 4H-SiC are present in the optical spectrum of the as-grown samples. Following a proton irradiation, the material is altered and the luminescence of the shallow centers is attenuated almost entirely with the emergence of deeper shallow traps at energies greater than 300 meV below the conduction band. Subsequent hightemperature thermal annealing of the material results in an increase in the emission spectrum at both the near band edge region (Eg = 3.25 eV) and between 2.65 and 2.95 eV. Recovery of the characteristic nitrogen-related peaks at the near band edge following high-temperature annealing is identified, but is not complete even at 1500 °C. In the deep trap region below 2.95 eV, activation of trap centers with annealing results in a sharp increase in the signal intensity of an irradiation-induced defect trap (2.90 eV) as well as the associated phonon replicas. Based on previous ion-implantation and other radiation studies in 4H-SiC, the emergence of the 2.90 eV defect complex and associated phonon replicas after high temperature anneal is the well known D1 photoluminescence. The observed lines in the D1 spectrum are due to exciton recombination at isoelectronic defect centers.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
- 4
- Cited by