Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:53:59.018Z Has data issue: false hasContentIssue false

Photoluminescence and Scintillation Properties of Pb2+ Based Quantum Dots in CsCI Host Crystal

Published online by Cambridge University Press:  21 February 2011

M. Nikl
Affiliation:
Institute of Physics, Cukrovarnicka 10, 16200 Prague, Czech republic
K. Nitsch
Affiliation:
Institute of Physics, Cukrovarnicka 10, 16200 Prague, Czech republic
I. Dafinei
Affiliation:
Division PPE, CERN, Geneva, Switzerland
P. Lecoq
Affiliation:
Division PPE, CERN, Geneva, Switzerland
G.P. Pazzi
Affiliation:
IROE del CNR, Via Panciatichi 64, 50 127 Firenze, Italy
P. Fabeni
Affiliation:
IROE del CNR, Via Panciatichi 64, 50 127 Firenze, Italy
M. Gurioli
Affiliation:
LENS, University of Florence, 50 125 Firenze, Italy
Get access

Abstract

The spectral and kinetic properties of photoluminescence of Pb2+ aggregated phase in CsC1 host, together with scintillation characteristics of CsCI:Pb crystals, are reported in the 10 - 300 K temperature range. Absorption, steady-state excitation and emission spectra of Pb2+ phase in CsCI host are similar to those of CsPbCl3 bulk crystal (emission peak at 419 nm at 10 K). The decay of the 421 nm luminescence of the Pb2+ phase in CsCl shows single exponential behavior with extremely short decay time of 40 ps at 421 nm and 10 K,which is considerably shorter than the decay times found in the decay of CsPbCl3 bulk emission (0.45, 2.8 and 12 ns at 418 nm and 10 K). In the scintillation decay of CsCI:Pb, two components with 0.95-1 ns and 2-3 ns decay times were found and no slower component is present at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.chapter “Survey and General Interest Talks”, in Heavy scintillators for scientific and industrial applications ed. by Notaristefani, F.De, Lecoq, P., Schneegans, M. (Editions Frontieres, France 1993),p. 3153.Google Scholar
2. Misawa, K., Nomura, S., Kobayashi, T., Optics of Semiconductor Nanostructures, ed. by Henneberger, F., Schmitt-Rink, S., Gobel, E.,(Akademie Verlag 1993) p. 447.Google Scholar
3. Bollinger, L.M. and Thomas, G.E., Rev.Sci.Instr. 32, 1044 (1961).10.1063/1.1717610Google Scholar
4. Nikl, M., Mihokova, E., Nitsch, K., Polak, K., Rodova, M., Pazzi, G.P., Fabeni, P., Gurioli, M.: Chem.Phys.Lett. 220, 14 (1994).10.1016/0009-2614(94)00127-8Google Scholar
5. Kubota, S., Itoh, M., Ruan, J., Sakuragi, S., Hashimoto, S., Phys.Rev.Lett. 60, 2319 (1988) NIM A289, 253 (1990).Google Scholar
6. Amitin, L.N., Anistratov, A.T., Kuznetzov, A.I., Fiz.Tverd.Tela 21, 3535 (1979).Google Scholar
7. Spano, F.C., Kuklinski, J.R., Mukamel, S., Phys.Rev.Lett. 65, 211 (1990).10.1103/PhysRevLett.65.211Google Scholar
8. Heidrich, K., Kunzel, H., Treusch, J., Sol.St.Comm. 25, 887 (1978).10.1016/0038-1098(78)90294-6Google Scholar
9. Mihokova, E., Nikl, M., Polak, K., Nitsch, K., J.Phys.Cond.Mat. 6, 293 (1994).Google Scholar
10. Ibragimov, K.I., Lushchik, A.Ch., Lushchik, Ch.B., Frorip, A.G., Jaanson, N.A., Sov.Phys.Sol.St. 34, 1690 (1992).Google Scholar