Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:35:39.174Z Has data issue: false hasContentIssue false

Photoluminescence and In/Ga Intermixture in InAs/InGaAs DWELL Structures

Published online by Cambridge University Press:  01 February 2011

A. Vivas Hernandez
Affiliation:
ESIME– Instituto Politécnico Nacional, México D. F. 07738, México
I.J. Guerrero Moreno
Affiliation:
UPIITA– Instituto Politécnico Nacional, México D. F. 07320, México E-mail: [email protected], [email protected]
E. Velázquez Lozada
Affiliation:
ESIME– Instituto Politécnico Nacional, México D. F. 07738, México
Get access

Abstract

The photoluminescence (PL) and photoluminescence temperature dependences have been studied in InAs quantum dots (QDs) embedded in the In0.15Ga1–0.15As/GaAs quantum wells (QWs) with QDs grown at different temperatures (470–535 °C). Ground state (GS) related QD PL peaks shift into the red side with increasing QD growth temperature to 510 °C and the blue shift is observed when the temperature increased to 535 °C. The temperature dependences of GS PL peak positions were fitted on the base of Varshni relation and the fitting parameters were compared with the bulk InAs and the In0.21Ga0.79As allow. This comparison has revealed that for QDs grown at 490–510 °C the PL fitting parameters are the same as for the bulk InAs crystal. The DWELL structures with QDs grown at other temperatures have fitting parameters different from the bulk InAs. Last fact testifies that in these structures the Ga/In inter-diffusion between QDs and a QW has been realized. This Ga/In intermixture can be stimulated not only by the high temperature (535 °C), but by the essential elastic stress as well in the DWELL structure with lower QD densities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bimberg, D., Grundman, M. and Ledentsov, N. N., Quantum Dot Heterostructures (Wiley & Sons, 2001) p. 328.Google Scholar
2. Liu, G. T., Stintz, A., Li, H., Malloy, K. J. and Lester, L. F., Electron Lett. 35, 1163 (1999).Google Scholar
3. Amtout, A., Raghavan, S., Rotella, P., von Winckel, G., Stinz, A., Krishna, S., J. Appl. Phys. 96, 3782 (2004).Google Scholar
4. Haft, D., Warburton, R. J., Karrai, K., Huant, S., Medeiros-Ribeiro, G., Garsia, J. M., Schoenfeld, W., Petroff, P. M., Appl. Phys. Lett. 78, 2946 (2001).Google Scholar
5. Torchynska, V., Polupan, G. P., “III-V Material Solar cells for space application”, J. of Semiconductor Physics, Quantum Electronics & Optoelectronics, 5, 61, (2002).Google Scholar
6. Torchynska, T., Polupan, G., Conde Zelocuatecatl, F., Scherbina, E., Application of III-V Materials in Space solar cell engineering, Modern Physics Letter, 15, 593 (2001).Google Scholar
7. Torchynska, T.V., Polupan, G.High efficiency solar cells for space applications”, Superficie y Vacio, 17 (3), 22, (2004).Google Scholar
8. Stintz, A., Liu, G. T., Gray, L., Spillers, R., Delgado, S. M., Malloy, K. J., J. Vac. Sci. Techn. B. 18 (3), 1496 (2000).Google Scholar
9. Torchynska, T.V., Velazquez Lozada, E., Casas Espinola, J.L., J. Vac. Sci. Techn. 27 (2), 919, (2009).Google Scholar
10. Torchynska, T. V., J. Appl. Phys. 104 (7), 074315 (2008).Google Scholar
11. Torchynska, T. V., Casas Espinola, J. L., Velazquez Lozada, E., Shcherbyna, L. V., Stinz, A., Pena Sierra, R., Physica B: Conden. Matt. 401–402, 584 (2007).Google Scholar
12. Torchynska, T. V., Casas Espinola, J. L., Borkovska, L. V., Ostapenko, S., Dybic, M., Polupan, O., Korsunska, N. O., Stintz, A., Eliseev, P. G., Malloy, K. J., J. Appl. Phys. 101, 024323 (2007).Google Scholar
13. Casas Espinola, J. L., Torchynska, T. V., Polupan, G., Pena Sierra, R., Phys. Stat. Sol. (c), 4, 379 (2007).Google Scholar
14. Torchynska, T. V., Dybiec, M., Ostapenko, S., Phys. Rev. B. 72, 195341 (2005).Google Scholar
15. Varshni, Y.P., Physica 34, 149 (1967).Google Scholar
16. Eliseev, P. G, Li, H., Iu, G. T., Stintz, A., Nevell, T. C., Lester, L. F.,. Mally, J., IEEE J. Select. Topics Quant. Electron. 7 (3), 135 (2001).10.1109/2944.954121Google Scholar
17. Huang, Y. S., Qiang, H., Pollack, F. H., Pettit, G. D., Kirtchner, P. D., Woodall, J. M., Stagier, H., Soresen, L. B., J. Appl. Hys. 70 (12), 7537 (1991).Google Scholar
18. Landolt-Boernstein, A., Numerical Data and Functional Relationship in Science and Technology, v. 22 Semiconductors, (Springer, Berlin, 1987), p. 118.Google Scholar