Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T13:36:04.337Z Has data issue: false hasContentIssue false

Photoluminescence Activity of Neodymium-Doped Gallium Oxide Thin Films

Published online by Cambridge University Press:  01 February 2011

Celine Lecerf
Affiliation:
[email protected], ENSICAEN, CIMAP, Caen, France
Philippe Marie
Affiliation:
[email protected], ENSICAEN, CIMAP, Caen, France
Cedric Frilay
Affiliation:
[email protected], ENSICAEN, CIMAP, Caen, France
Julien Cardin
Affiliation:
[email protected], ENSICAEN, CIMAP, Caen, France
Xavier Portier
Affiliation:
[email protected], ENSICAEN, CIMAP, Caen, France
Get access

Abstract

Photoluminescence activity was observed for neodymium-doped gallium oxide thin films prepared by radiofrequency magnetron co-sputtering. Structural and optical properties of as-grown and annealed films were studied and photoluminescence activity was especially investigated. The most intense lines were associated to the 4F3/24I9/2 and 4F3/24I11/2 electronic transitions of Nd3+. The effects of deposition and treatment parameters such as the substrate temperature, the post anneal treatment or the neodymium content in the films were particularly examined with the aim to reach the best luminescence efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gordon, R. G., MRS Bull., 52, (2000).Google Scholar
2. Liu, Z. and al., Sens. Actuators B2 129, 666 (2008).Google Scholar
3. Bartic, M., Toyoda, Y., Baban, C.-I. and Ogita, M., J. Appl. Phys. 45, 5186 (2006).Google Scholar
4. Nogales, E., Garcia, J.A., Méndez, B. and Piqueras, J., Appl. Phys. Lett. 91, 133108 (2007).Google Scholar
5. Minami, T., Semicond. Sci. Technol. 20, 35 (2005).Google Scholar
6. Nogales, E., Méndez, B. and Piqueras, J., Appl. Phys. Lett. 86, 113112 (2005).Google Scholar
7. Ohta, H., Nomura, K., Hiramatsu, H., Ueda, K., Kamiya, T., Hirano, M., Hosono, H., Sol. State Electronics 47, 22612267 (2003).Google Scholar
8. Marie, P., Portier, X., Cardin, J., phys. stat. Sol. 205, 1943 (2008).Google Scholar
9. Callegari, A., Hoh, P.D., Duchanan, D.A., and Lacey, D., Appl. Phys. Lett. 54, 332 (1989).Google Scholar
10. Hao, J. and Cocivera, M., J. Phys. D: Appl. Phys. 35, 433 (2002).Google Scholar
11. Miyata, T., Nakatani, T. and Minama, T., J. of Luminescence 87-89, 1183 (2000).Google Scholar
12. Minami, T., Yamada, H., Kubota, Y., Myata, T. and Sakagami, Y., Proc. of the Fourth International Display Workshops, 605 (1997).Google Scholar
13. Canham, L.T, Appl. Phys. Lett. 57, 10461048 (1990).Google Scholar
14. Adair, R., Chase, L. and Payne, Stephen A., Phys. Review B 39, 33373349 (1989).Google Scholar