Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T04:04:32.007Z Has data issue: false hasContentIssue false

Photoelectrochemical properties of electrospun titania nanofibers - comparison with nanoparticles

Published online by Cambridge University Press:  31 January 2011

Jan Macak
Affiliation:
Jaromir Pytel
Affiliation:
[email protected], Elmarco, RD, Liberec, Czech Republic
Jesus Rodriguez Ruiz
Affiliation:
[email protected], Università degli Studi di Cagliari, Cagliari, Italy
Radim Beranek
Affiliation:
[email protected], University of Erlangen, Chemistry, Erlangen, Germany
Get access

Abstract

Photoelectrochemical properties of photoelectrodes consisting of pressed layers of electrospun TiO2 nanofibers were investigated by wavelength-resolved photocurrent measurements in LiClO4 (0.1 M) aqueous electrolyte with or without addition of KI as an additional hole scavenger. The photocurrents on nanofiber electrodes were three-times lower as compared to electrodes based on Hombikat nanocrystalline particles. The calcination of electrodes was necessary to observe enhanced efficiencies in the presence of iodide. The most striking difference between nanofiber and particulate electrodes was found in the effect of calcination on the efficiency of water photooxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lewis, N. S. Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729.Google Scholar
2 Balzani, V. Credi, A. Venturi, M. ChemSusChem 2008, 1, 26.Google Scholar
3 Kamat, P. V. J. Phys. Chem. C 2007, 111, 2834.Google Scholar
4 Memming, R. Semiconductor Electrochemistry, Wiley-VCH, Weinheim, 2001.Google Scholar
5 Rajeshwar, K. in Semiconductor Electrodes and Photoelectrochemistry, Vol. 6 (Ed.: Licht, S.), Wiley-VCH, Weinheim, 2003, pp. 1.Google Scholar
6 Hoffmann, M. R. Martin, S. T. Choi, W. Bahnemann, D. W. Chem. Rev. 1995, 95, 69.Google Scholar
7 Fujishima, A. Rao, T. N. Tryk, D. A. J. Photochem. Photobiol. C 2000, 1, 1.Google Scholar
8 Tryk, D. A. Fujishima, A. Honda, K. Electrochim. Acta 2000, 45, 2363.Google Scholar
9 Carp, O. Huisman, C. L. Reller, A. Prog. Solid State Chem. 2004, 32, 33.Google Scholar
10 O'Regan, B., Graetzel, M. Nature 1991, 353, 737.Google Scholar
11 Brian, C. O'Regan, James, R. Durrant, Acc. Chem. Res. 2009, 42, 1799.Google Scholar
12 Vogel, R. Hoyer, P. Weller, H. J. Phys. Chem. 1994, 98, 3183.Google Scholar
13 Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737.Google Scholar
14 Bang, J. H. Kamat, P. V. ACS Nano 2009, 3, 1467.Google Scholar
15 Jennings, J. R. Ghicov, A. Peter, L. M. Schmuki, P. Walker, A. B. J. Am. Chem. Soc. 2008, 130, 13364.Google Scholar
16 Macak, J.M. et al., Curr.Opin. Solid Sate Mat. Sci. 2007, 11, 3.Google Scholar
17 Levy-Clement, C., Elias, J. Tena-Zaera, R., Phys. Stat. Sol. C 2009, 6, 1596.Google Scholar
18 Greene, L. E. Yuhas, B. D. Law, M. Zitoun, D. Yang, P. Inorg. Chem. 2006, 45, 7535.Google Scholar
19 Bard, A. J. J. Phys. Chem. 1982, 86, 172.Google Scholar
20 Hagfeldt, A. Graetzel, M. Chem. Rev. 1995, 95, 49.Google Scholar
21 Hodes, G. Howell, I. D. J. Peter, L. M. J. Electrochem. Soc. 1992, 139, 3136.Google Scholar
22 Wahl, A. Ulmann, M. Carroy, A. Augustynski, J. J. Chem. Soc., Chem. Commun. 1994, 2277.Google Scholar
23 Kelly, J. J. Vanmaekelbergh, D. Electrochim. Acta 1998, 43, 2773.Google Scholar
24 Solarska, R. Rutkowska, I. Morand, R. Augustynski, J. Electrochim. Acta 2006, 51, 2230.Google Scholar
25 Beranek, R. Kisch, H. Electrochem. Commun. 2007, 9, 761.Google Scholar
26 Beranek, R. Kisch, H. Photochem. Photobiol. Sci. 2008, 7, 40.Google Scholar
27 Beranek, R. Neumann, B. Sakthivel, S. Janczarek, M. Dittrich, T. Tributsch, H. Kisch, H. Chem. Phys. 2007, 339, 11.Google Scholar
28 Wardman, P. J. Phys. Chem. Ref. Data 1989, 18, 1637.Google Scholar
29 Tang, J. Durrant, J. R. Klug, D. R. J. Am. Chem. Soc. 2008, 130, 13885.Google Scholar
30 Imanishi, A. Okamura, T. Ohashi, N. Nakamura, R. Nakato, Y. J. Am. Chem. Soc. 2007, 129, 11569.Google Scholar
31 Argazzi, R. Bignozzi, C.A. Heimer, T.A. Hasselmann, G.M. Meyer, G.J. J. Phys. Chem B 1998, 102, 7577.Google Scholar
32 Hagfeldt, A. Grätzel, M., Acc. Chem. Res. 2000, 33, 269.Google Scholar